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4 NOTATION

C Constant used to obtain exponentially stretched mesh.

CA  Adaptive mesh constant.
A2

Cf Local skin friction coefficient, 2w / u.

C Specific heat at constant pressure.P

C Specific heat at constant volume.v

c Speed of sound, kyRT.

E Error vector.

e Energy, C T + (u2 + v 2)/2.

F Flux vector, eqn 2-28.

FD  Damping vector, eqn 3-30.

f Primitive flow variable p, u, v, or T.

G Flux vector, eqn 2-28.

GD Damping vector, eqn 3-32.

H Flux vector, eqn 2-28.

9 2
H Total Enthalpy, C T + (u2 + v2)/2.
o p

h. Convective heat transfer coefficient, Appendix A.1

h Thickness of the two-dimensional wedge-flat plate.

i Index for grid points in the axial direction.

IL Total number of grid points in the axial direction.

1W Number of grid points axially along the nozzle wall.

JL Total number of grid points in the radial direction.

JWI Radial index of the inner nozzle wall.

JWO Radial index of the outer nozzle wall.

j Index for grid points in the radial direction.

Jo Exponent parameter equal to 0 or 1 for two-dimensional or

axisymmetric flow, respectively.
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K Ratio of radial grid point heights, r(i,3)/r(i,2).

K Initial velocity profile constant in the wake region, eqn 4-30.

k Thermal conductivity.

L Length scale.

L Length scale used to generate stretched mesh.m

L , L MacCormack difference operators in the n and directions.

Prandtl turbulent mixing length.
Mach number, (u2 + v2 )  /c.

P Static pressure.

PB  Base pressure.

P Pitot pressure.

)- B  Base pressure coefficient, (P - P_)/q_"

Pr Prandtl number, pC /k.

-P
q Heat flux vector.

4x9 4 r Heat flux in the axial and radial directions.

R Gas constant for air.

2 2 12Re Reynolds number, p(u + v ) L/i.

r Spatial coordinate normal to the nozzle centerline.

r Mach disc radius.m

S Fluid stress tensor that includes pressure and viscous forces.

T Absolute temperature.

t Time.

tch Characteristic time, eqn 3-36.

U Conservative flow variable vector, eqn 2-28.

u Velocity vector.

u Velocity component along the x axis.

u ch Characteristic velocity, eqn 3-36.
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I,

+
u Nondimensional velocity component, u/(i /)~

V Volume.

v Velocity component along the r axis.

x Spatial coordinate parallel to the nozzle centerline.

x Mach disc reflection length.r

y Spatial coordinate normal to the x axis in a two-dimensional

flow.

YB Radial thickness of the nozzle base annulus.

Nondimensional height, y(T/) 2/v.

GREEK SYMBOLS:

' ,X Damping coefficients in the q and directions.

'Ratio of specific heats, C /Cp v

6 Flow deflection angle, Chapter 1.

6 Momentum boundary layer thickness.

6* Momentum boundary layer displacement thickness.

ij Kronecker delta, equal to 0 if i~j or equal to I if i=j.

Turbulent eddy viscosity coefficient.

r) Transformed coordinate normal to the nozzle centerline.

Designates a finite difference when used as a prefix.

Local flow angle, arctan(v/u).

Boundary layer momentum thickness, Appendix C.

Viscosity diffusion coefficient, eqn 2-37.

Left running characteristic line.

Absolute viscosity coefficient.

11M Mach'angle of supersonic flow, eqn 4-1.

v Kinematic viscosity, P/P.

FTransformed coordinate parallel to the nozzle centerline.

Fluid density.
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o Normal stress on an element of fluid, eqn 2-29 - 2-31.

T Shear stress, eqn 2-32.xr

W Vorticity.

SUBSCRIPTS:

aw Adiabatic wall.

e Evaluated at the edge of the boundary layer.

i,j Grid point indices.

i,j Indicial notation, chapter 2.

j Evaluated in the jet flow.

n Normal to the nozzle wall.

s Tangent to the nozzle wall.

t Turbulent flow.

tr Transition from regular shock reflection to Mach disc reflection.

w Evaluated in the wake.

o Stagnation value.

Evaluated in the external freestream.

SUPERSCRIPTS:

n Evaluated at known time, nft.

n+2 Evaluated at intermediate predictor time level, (n+2)At.

n+l Evaluated at new corrector time level, (n+l)Lt.

o Evaluated at time level t=0.

OTHER NOTATION:

() Denotes a two-dimensional matrix.

(-) Denotes time averaged values, chapter 2.

( )' Denotes unsteady values due to turbulence, chapter 2.
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3 ABSTRACT

The use of computational analysis in the design of propulsive

nozzle installations has recently expanded as advanced digital com-

puters have been developed which result in lowering computational

costs versus actual wind tunnel test costs. Although a range of

numerical techniques has been applied in this area, only those utiliz-

ing the full Navier-Stokes equations across the flow domain have

successfully simulated the viscous phenomena associated with aft-end

flowfields. Navier-Stokes methods are particularly useful for predicting

off-design nozzle characteristics where the overexpanded or underexpanded

flowfield is more complex and where viscous regions are more prevalent

than at on-design cciditions. One feature typical of these off-design

conditions is the appearance of a strong normal shock wave referred to

as a Mach disc. Viscous nozzle flowfields containing this phenomenon

have not been adequately simulated in the past. This research details

the development of a numerical Navier-Stokes method capable of accurately

predicting supersonic coflowing nozzle flowfields which contain both

highly viscous regions and complex shock structures typified by the Mach

disc formation.

Numerical solutions to the Navier-Stokes equations are obtained for

a domain containing an axisymmetric coflowing nozzle with a thick base

annulus (M = 1.94, Mje t = 3.0, Re = 2.2x10 6). Five nozzle pressure

ratio conditions ranging from a highly overexpanded case (Pj/P = 0.15)

which exhibits a Mach disc shock formation, to a slightly underexpanded

case (P/P. = 1.59) are examined and solved numerically. The weak con-

xv



servative form of the two-dimensional (axisymmetric), time dependent

Navier-Stokes equations is solved using MacCormack's explicit finite

difference method. This algorithm is an efficient Lax-Wendroff type

differencing scheme of second order accuracy which utilizes time-

splitting and two-step predictor-corrector techniques. An adaptive

grid scheme is utilized in the wake of the nozzle base annulus that

allows the fine mesh region of the computational grid to remain in

the mixing layer containing high flow gradients as each solution

progresses towards convergence. Appropriate numerical boundary

conditions are applied that allow the computational domain to be re-

stricted to a compact region surrounding the nozzle. Locally depend-

ent eddy viscosity modelling is applied in the form of a Cebeci-Smith

two layer model in the boundary layer regions on the nozzle walls,

and a form of the Prandtl mixing length model in the nozzit wake region.

The numerical solutions successfully reproduced all of the

essential nozzle flow features including boundary layers, corner

expansions, recompression shocks, the separated recirculation region

along the nozzle base wall, and the evolution of the near wake to a

far wake type of flow. Correct transition from regularly reflected

shock waves at the line of symmetry in the jet core to the strong Mach

disc shock reflection was numerically achieved, as was the simulation

of the subsonic embedded region immediately behind the Mach disc shock

structure. Numerically obtained nozzle base pressLre coefficients were

within seven percent of the experimentally determined values for all

cases where the flow obeyed the assumption of remaining attached in the

w divergent portion of the convergent-divergent nozzle.

Present solution times for 2,500 point grids are on the order of

xvi



two to four hours when run on a Cyber 750 computer. A fully vectorized

version of the present computer code can be expected to converge within

five minutes on a CRAY-i computer for similar grids, allowing the compu-

tation of more complex nozzle geometries and better resolution in the

boundary layers through the use of a finer mesh in future efforts.

xvii
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

The increased importance of the aft-end drag problem associated

with nozzle installations in current and future high performance air-

craft has led to extensive and very costly experimental nozzle test

programs. Any technique which can reduce this requirement for wind

tunnel testing in the design of nozzle installations will result in a

significant savings to the technical community of both time and resources.

Computational aerodynamics shows great promise as a field which

can have a favorable impact on this requirement for nozzle design

information. Current Navier-Stokes techniques in this area utilize

advanced digital computers to simulate the flowfield surrounding the

nozzle at projected flight conditions. It has been shown that boundary

layer and shear layer growth, areas of separated flow, shock wave

formation and interactions, and jet plume blockage and entrainment

characteristic of nozzle flows can be analyzed using computational

techniques. Unlike experimental testing, computational analysis is

not necessarily restricted by wind tunnel Reynolds number or nozzle

exhaust temperature limitations. Flowfields analyzed computationally

can also eliminate the undesirable effects of support stings and test

section walls that occur during experimental testing. As more ad-

vanced computers are developed, the cost of numerical analysis

decreases. Since the cost of wind tunnel testing is steadily in-

creasing, computational analysis is being utilized more extensively.

Several of the first computational solutions to include viscous



effects inherent to aft end or nozzle flowfields consisted of patching

techniques that divided the field into predominantly inviscid and

viscous regions. Grossman and Melnik (1), and Cosner and Bower (2)

obtained transonic boattail nozzle solutions using iterative techniques

that divided the flowfield into an inviscid freestream, an inviscid

jet, and a viscous boundary layer and mixing layer region. The free-

stream solution procedure assumed irrotational potential flow that

could be solved by a relaxation algorithm applied to the potential flow

equations. The rotational inviscid supersonic jet was solved using a

hyperbolic marching technique. Imbedded shocks in the jet were ex-

plicitly fitted to satisfy the Rankine-Hugoniot equations. The viscous

mixing region was assumed to be isobaric and was solved using integral

techniques. Each region was solved separately and patched together

iteratively using pressure and flow direction conditions at the common

boundaries. Separation regions could not be accounted for, so equiva-

lent fitted body blending was used to obtain reasonable flow solutions.

Pergament, Dash, and Wilmoth (3) introduced a displacement thickness

correction to the inviscid plume boundary to account for the effects of

jet entrainment on the inviscid external flow calculation. Their analysis

also included the effects of species mixing and pressure gradients in the

mixing region, but still could only account for separation regions by

body blending techniques. Yeager (4) attempted to include a fourth

separation region involving recirculating flow that was defined by a

dividing streamline which connected separation and reattachment points.

The extent of this region was determined using local control volume

analyses, and it was found that reasonable reattachment points could only

be predicted through the application of empirical corrections during the

2



solution procedure. Although these iteratively patched solutions gave

reasonable results for specific data sets, the required amount of

empirical matching and explicit fitting limits the use of this type

of computational method as a predictive technique.

A more adaptable method of simulating the viscous-inviscid inter-

actions that occur in typical nozzle flowfields involves solving the

time dependent, compressible Navier-Stokes equations uniformly over the

entire nozzle flowfield. This approach has a direct advantage over the

previously discussed iteratively patched methods where an accurate vis-

cous-inviscid matching procedure is required in order to obtain reasonable

results. In the direct approach, the predominantly inviscid and viscous

flow regions are computed simultaneously with no matching required.

Holst (5) used this approach to solve for supersonic flow over axisym-

metric boattail nozzles with plume simulators. Although a plume

simulator does not model the entrainment and blockage of a jet plume,

its flowfield does contain phenomena characteristic to coflowing

nozzles such as turbulent boundary layers, recompression shock waves,

and separated recirculating regions of flow. Holst's solutions were

obtained using MacCormack's explicit finite difference algorithm, a

stretched mesh aligned with the solid body through an analytic trans-

formation and a two layer eddy viscosity model to account for the

Reynold's stresses that included a relaxation formula to model the

separated flow region. Pressure distributions, skin friction co-

efficients and areas of separated flow were in good agreement with

experimental data, particularily in the cases where a fine mesh was

utilized. Mikhail (6) recently computed solutions for viscous

3



supersonic flow around an axisymmetric boattail nozzle with a jet

exhaust flow. MacCormack's explicit method was again used as the

numerical algorithm, together with a surface oriented mesh system

obtained through a numerical mapping procedure. Reynold's stresses

were also accounted for through the application of algebraic eddy

viscosity models. Reasonable agreement with experimental surface

pressure data on the boattail was obtained.

Navier-Stokes solutions are especially useful for predicting the

off-design nozzle characteristics where the flowfield is in either a

significantly overexpanded or underexpanded state. At these conditions

the flow structure is usually more complex with viscous regions becoming

more prevalent than at on-design conditions. One feature typical of these

off-design conditions is the establishment of a triple-point in the jet

flow, and the appearance of a strong normal shock wave referred to as a

Mach disc in axisymmetric flow or a Riemann wave in two-dimensional flow

(Figure 1). This strong shock formation occurs when the deflection angle

of the jet flow is large enough so that the resulting shock wave is too

strong for a regular reflection at the centerline to exist. Near the

centerline the Mach disc must be normal, since this is the only way a

shock can occur without any change in flow direction. As shown in Figure

2, both the Mach disc and the reflected shock are curved near the triple

point (7). A slip line emanates from the triple point, and the flow

downstream of the Mach disc and reflected shock is rotational in nature

due to the curvature of the shocks. As discussed by Henderson and Lozzi

(8), this region downstream of the shocks may be either totally subsonic

or contain both supersonic and subsonic regions. If the incident Mach

4
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MACH REFLECTION

M < 1
M > 1.4 .--

Figure 1. shock structure for a Typical overexpanded

Coflowing Axisymmetric Nozzle.
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number M I is greater than 2.40, region 3 will be supersonic, while region

4 remains subsonic. Since the jet Mach numbers relevant to this investi-

gation are greater than 2.40, the latter case in which a subsonic core

only exists behind the Mach disc will be examined.

The transition from regular to Mach reflections can also be examined

using a hodograph diagram shown in Figure 3. For deflection angles less

than the transition angle (6 ), the flow can he brought to the requiredtr

zero deflection at state 3 through a weak regular wave reflection. For

deflection angles greater than the transition angle, the flow in reg ion

3 cannot achieve a zero deflection state, and lies on the strong shock

portion of the initial shock polar. The flow near the centerline passes

through a strong normal shock to condition 4' with no deflection occurr-

ing. The flow state at the curved Mach disc then exists along the strong

shock portion of the incident shock polar from a zero deflection state

4' near the centerline to a deflected state 4 near the triple point with

a pressure and flow angle equal to that in region 3, but with different

velocity and entropy values that generate the slip line.

The mixed supersonic-subsonic flow region surrounding the Mach

disc greatly complicates the anlysis of nozzle flowfields in which this

shock structure is present. Flowfields containing this phenomena have

not been adequately similated in the past using viscous techniques.

A variety of techniques for locating the triple point and the result-

in_ normal shock have been presented that utilize an iterative combina-

tion of the method of characteristics and schemes involving approximate

analyses such as pressure requirements downstream of the strong shock

(9,10) or one-dimensional flow calculations downstream through a throat

region in the flow (11,12). Although each of these methods give reason-
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Figure 3. Hodograph Diagram showing Shock Polar Intersections
for Trans.ition from Regular to Mach Reflection.



able results for determining the triple point location and size of the

resulting Mach disc, each is only valid for a limited range of nozzle

pressure ratios and jet Mach numbers. In addition, none of these

techniques give a solution for the subsonic core region downstream

of the normal shock. At least two time dependent inviscid techniques

have been used to overcome the deficiencies of the semi-empirical methods

previously mentioned. Jofre (13) performed a finite difference technique

for an underexpanded jet with a Mach disc solution. A method of charac-

teristics solution was used in the plume expansion region near the

nozzle exit. This gave an upstream flow profile used in the time depend-

ent solution further downstream. Sinha, Zakkay, and Erdos (14) analyzed

a two-dimensional underexpanded jet containing a strong normal shock

using a finite difference technique over the entire flowfield of interest.

Both of these investigations used versions of Lax-Wendroff numerical

algorithms and simple square grids. These solutions were much more

adaptable than the previous semi-empirical techniques since the flow

tends to adjust to its local environment so that the proper shock stucture

is automatically obtained as the solution develops. However, these

solutions represent only a first approximation of the correct viscous

solution (15), particularly in the region downstream of the normal shock

as shown in Figure 4. Flow properties in this region were found to be

heavily dependent on the level of damping used in the solution algorithm.

For example, Jofre (13) found that an unrealistic region of reverse flow

was generated immediately behind the normal shock unless heavy damping

was applied in the solution procedure.

All of these inviscid solutions involved jets exhausting into a

quiescent atmosphere. Solutions were not attempted for the more com-

9
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plex case of a coflowing nozzle where the external flow stream interacts

with the jet. A full Navier-Stokes solution which accounts for the viscous

effects present in the flow field at these off-design conditions is

necessary in order to adequately simulate both the strong-shock structure

with its resulting imbedded subsonic flow region as well as the inter-

action of the jet plume with the external flow field.

1.2 RESEARCH OBJECTIVES

The primary objective of this research is the development of a

numerical Navier-Stokes method capable of accurately predicting super-

sonic coflowing nozzle flowfields which contain both highly viscous

regions and complex shock structure typified by the Mach disc shock

formation. Overexpanded axisymmetric nozzles will primarily be simu-

lated, since they meet the previous criteria while possessing fairly

compact flow domains which contain the flow phenomena of interest. The

experimental data of Bromm and O'Donnell (16) has been chosen as a basis

for comparison in this research effort. Data in this reference is given

for an axisymmetric Mach three isentropic nozzle embedded in a turbulent

Mach 1.94 external flowfield as shown in Figure 5. Nozzle pressure

ratios ranging from a slightly underexpanded condition to a highly

overexpanded condition which exhibits the Mach disc structure were

obtained experimentally. This particular nozzle possesses a relatively

thick base annulus which generates a strong viscous-inviscid interaction

in the near wake region of the nozzle. These interactions affect the

development of the primarily inviscid shock structure, and can only be

analyzed properly using a full Navier-Stokes methodology.

11
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Although Mikhail achieved full Navier-Stokes solutions for an

axisymmetric coflowing nozzle, he was not able to generate an accurate

solution for the condition at which a Mach disc shock structure was

shown to exist expe-imentally (6). Possible causes of this inability

to generate the strong shock structure include boundary condition

formulation, mesh spacing and turbulence modeling. These three areas

will be concentrated on in the present investigation in order to achieve

the desired goal of an accurate predictive technique for both on-design

and off-design nozzle performance.
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CHAPTER II

MATHEIATICL DESCRIPTION OF THE FLOW STRUCTURE

2.1 GOVERNING EQUATIONS

The governing equations for flows containing the shock and vis-

cous phenomena of interest are the conservation equations for mass,

momentum, and energy known as the Navier-Stokes equations. The gases

involved are assumed to be single component, have constant specific

heats, and obey the perfect gas equation of state:

P = PRT (2-1)

In computational fluid dynamics, the Eulerian method is usually

applied to the problem of interest. This method involves a fixed con-

trol volume that is specified relative to a given coordinate system.

Properties of the fluid are then specified as functions of both time

and space. The conservation equations are approached using this method-

ology.

CONSERVATION OF ASS

For a given system in which matter is neither created or destroyed,

the law of mass conservation can be written as

f + V • cu) dV = 0 (2-2)

V

where V is an arbitrary volume fixed in space.

CONSERVATION OF MOIENTUM

For a given system, the law of momentum conservation states that

the rate of change of momentum is equal to the sum of the external forces

14



acting on the control volume. If body forces :ire neglected, this law

can be written as:

- ( + V • (u) ] dV = f(V • ) dV (2-3)

The variable S denotes a stress tensor involving pressure and viscous

forces which acts on the fluid.

CONSERVATION OF ENERCY

The law of conservation of energy states that for a given system

which does not contain any internal heat sources, the rate of change

of the total energy of the system is equal to the heat added into the

system plus the work done on the system by viscous and pressure forces.

This can be stated as

ff e + V • (Pe) U1 dV=fff . .u - V.[) dV (2-4)

V V

Since these conservation equations are valid for any arbitrary

volume V; when the integrands are continuous, these equations imply that:

d-/ct + V • )u = 0 (2-5)

5G(u)1Wt + V (C'u) u - V S S = 0 (2-6)

(.e)1A + G • e)u + (V.; - V..S) = 0 (2-7)

It should be noted that these equations are written in conserva-

tive form where, for the two-dimensional and axisymmetric flows of

interest, the applicable dependent variables are p, pu, pv, and pe. As

shown by Roache (17), this conservative form allows the finite difference

equations to preserve the Gauss divergence property of the continuum

equations. This form allows a balance between the flux quantities and

15



accumulation rates for a small control volume. Roache also states that

the Rankine-Hugoniot shock relations were derived using the conservative

form. Thus, shock jump conditions are automatically satisfied since the

conservative variables are continuous across the shock and need no special

treatment because of discontinities. This approach is known as shock

capturing or shock smearing. The conservation form of the equations then

allows the finite difference formulation to satisfy the physical laws on

a macroscopic scale, not merely in some academic limit as Ax, Ay, and At

approach zero.

Since the flowfields of interest are turbulent, the solution of the

conservation equations must take into account the effects of the random

fluctuations of the dependent variables inherent to turbulent flows. In

accounting for these effects, cartesian tensor notation will be applied.

The usual conventions of a repeated subscript indicating summation over

the entire range of indices and a comma representing partial differentia-

tion will be used to make the equations compact. Cartesian tensors are

used to allow working directly with the physical components, while still

being applicable to the 2-1) and axisymmetric systems of interest. The

conservation equations (2-5) through (2-7) can then be written as:

t + (Pui),j = 0 (2-8)

(u.)t + (Pui u + 6ij P - Tij
'

), = 0 (2-0)

(e),t + ( 'euj + q. - ui  Ij),. = 0 (2-10)

where the stress tensor S has been expanded in the form:lij

S'' = - P'i. + -, (2-11)

The dependent variables in the conservation equations can be ex-

panded into the following form:
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U = u + U' (2-12a)

V = v + v' (2-12b)

P = P+ P' (2-12c)

o = Q + P' (2-12d)

e = e + e' (2-12e)

In these expansions the barred variables represent time averaging over

a time interval that is long compared to turbulent eddy fluctuations,

yet small compared to macroscopic flow changes. The primed variables

then represent fluctuations due to the turbulent nature of the flow.

As discussed by Chapman (18), this time averaging approach is valid

since the frequencies of most unsteady flows of interest are a factor

of 10 to 100 below the mean frequency of turbulent eddies.

If the dependent variables u, v, and e are mass averaged as

described in reference (19), and p and P are mean (time averaged) state

variables, then the conservation equations can be written in the form of

mean flow equations as:

+ (u.),j = 0 (2-13)

('1u)t + [(Guiu) + Pdj -(U.. - PuiuV)]'j = 0 (2-14)

(e) + [ej + + ule' - u. (.ij Puu)J, ' 
= 0 (2-15)

t 3 3 3 1 13 I] j

where a higher order mean energy dissipation term in u! has been neglected
1

in the energy equation (2-15).

The term [-(uiu] is known as the Reynolds stress. It represents
'i

a momentum transfer caused by turbulent fluctuations present in the flow-

field. This Reynolds stress term can be written as an apparent stress

caused by the turbulent nature of the flow:

17



= - ;,u.u. (2-16)
ij turb i j

Since air is essentially an isotropic fluid, the mean stress term can

be expanded into its normal and shear stress components as:

= - (u + u. (2-17)

ij Uk,k ij i,j j,

The turbulent stress term can then be written in analogous form as:

Iijiturb = At u k,k 6i" + L (Ui , j + uj  (2-18)

where ) and E are the turbulent visuosity coefficients of the flow.t

The coefficient c is kno-n as the eddy viscosity, and is analogous to

the molecular viscosity coefficient ;i. Hower, c is more a property of

the dynamics of the flow, whereas . is only a property of the fluid.

Combining the mean and turbulent stress terms, an overall stress term.

can be written as:

.(t+' ) u k + (+) (u + u. i) (2-19)zij total (+t) Uk,k j i,j 3,1

In the energy equation an additional unsteady term appears. This

term is by nature an apparent heat flux caused by the fluctuations in-

herent to turbulent flow and can be written as:

qj turb =  u'' (2-20)

If the heat flux term qj is defined by the Fourier heat equation

as:

q. = -k,.= - (C p /Pr) T,j (2-21)

then by the former analogy q. turb can be written as:

j turb - (C P/Prt) T (2-22)

where again E is the eddy viscosity coefficient, and Pr is the turbulent

Prandtl number of the flow. Combining these two heat fluxes, a total

18



heat flux can be written as:

qj total = -Cp (./Pr + E/Pr t ) T,j (2-23)

The mean conservation equations can then be written in the follow-

ing form, where the overhars on the terms are dropped for convenience,

and where the values of the shear stresses and heat fluxes are the total

values:

t + (Guj), 0 (2-24)

(.i), t + [(,ui)u. + P6.. - *],j = 0 (2-25)

(Le), t + t(,e) u. + q. - ui 7ij], = 0 (2-26)

Since the flowfields of interest are either two-dimensional or

axisv-metric in nature, the mean conservation equations can he written

in the following compact vector form:

+3! IF + 3(rJ°G) H
~U 3 1 ______ =(2-27)

X rJo ar rJo

where jo = 0 or 1 for either the two dimensional or axisymmetric cases,

respectively, and

_ xLu2 T xx T
,,e 'ue + q U - VT (2-28)

G 2 xr 0

v -rr C H,ve + q r -l ux - va r

where

= -P + ( +> div V + 2(L + ) u (2-29)

r = -P + (+t) div V + 2 ( + .)r (2-30)rrt



-P + (;+') div : + 2 (G. + ) v (2-31)

= (. + ) (-'u + v) (2-32)xr or

q = -C ( +  (2--
q P Pr Pr X (2-33

t

qr = -C + _- ) -T (2-34)* p Prz Pr r
t

and
d * iv -,7u jv v

div V -- + --- + jo - (2-35)
-,x r r

The coefficient of viscosity v for air can be assumed to var

according to Sutherland's law (19):

(2.27 10- 8)T I5/(T + 198.6) (lbf - sec/ft ) (2-36)

The second coefficient of viscosity is assumed as the following

by applying Stokes Hypothesis:

(N + t) = -2/3 ( . + L) (2-37)

The governing equations for the problem of interest now consist

of the four conservation equations in matrix form (eq. 2-27) with four

unknown dependent variables p, pu, ov and oe. The perfect gas law is

used to define the pressure in terms of these conservative variables,

and a model of the dependence of the eddy viscosity on the mean flow must

be introduced to overcome the "turbulent closure" problem inherent in the

turbulent mean conservation equations.

For numerical computation in a transformed (2,7,) cartesian plane, the

matrix form of the conservation equations (2-27) can be written as:

](r j  C)r;,. -r

)V I .,(r j  1G ]

+ [ -- + -.-- ,I = jo (2-38)x d T) rjo r JrjrJ °

where and ri are now the independent variahes, and the transformation

20



derivatives x' r' x, and rr are obtained numerically from a mapping

procedure. Equation (2-18) is actually in weak conservation form due

to the varying coefficients in front of the derivatives, and also due

to the source term in the axisymmetric case.

2.2 BOUNDA!RY AND INITIAL CONDITIONS

Boundary and initial conditions must be given in order to solve

the conservation equations which govern the flowfield. These conditions

must be carefully specified, since many flow features such as shock waves,

boundary layers, and recirculation areas arise from boundary conditions.

For the solution of a symmetric two-dimensional or axisymmetric supersonic

jet embedded in a supersonic external flowfield, the domain of interest

can be defined as shown in Figure 6. Only one-half of the total nozzle

flowfield needs to be considered due to the axis of symmetry on the jet

centerline. The remainder of this chapter will detail the specific bound-

arv conditions that are pertinent to this problem.

THE !'PS T RF.\ BON1)ARY

Inflow conditions on the upstream jet boundary (AB) and the up-

stream external boundary in the freestream (CD) are completely specified.

Velocity, pressure, and temperature profiles determined from auxiliary

computations or known experimentally on this boundary fix p, pu, ;v,

and ye for the duration of the problem solution at the boundary.

THE UPPER B(OVR:DARY

The upper boundary (DF) must accurately represent a free flight

condition where mass flow is allowed across this boundary embedded in

the supersonic external flowfield. Weak shock waves and Prandtl-'!eyer

2 1
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expansion waves must also exit this boundary without being reflected

artificially back into the domain of interest. One conditio, that

allows this is the assumption of a simple wave solution:

=0 (2-39)
I DE=

where is the straight left running characteristic line passing through

each point on the upper boundary. This characteristic line is determined

only by the value of the Mach number and flow angle of the supersonic

flow present near the upper boundary. This condition assumes that the

flow along this boundary is inviscid and homentropic.

THE DOW:STREA_ BOUNDARY

The downstream boundary (EF) is unique in that no rigorous assumptions

can be made about either the variables or their gradients unless the bound-

ary is placed a great distance downstream. In this case a no change

condition

F = 0 (2-40)

could be assumed, where f denotes the primitive variables c, u, v, and

T. For the case where the downstream boundary is placed where gradients

do exist, an extrapolation method based on this fact can be reasonably

applied. One such method is to assume that a flow gradient accurate to

second order can exist. This can be implemented as:

(Ax --- ) = 0 (2-41)
ix 'EF

In other words, gradients can occur which are parabolic with respect

to x. This condition is reasonable if the gradients at this boundary

are not severe as in the case where a strong shock wave exits the boundary.
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lhc centerline boundary (AF) is a line of symmetry with no mass

or enery flu across it. Therefore, the following boundary conditions

can be applied

ViAF = 0 (2-42)

= (2-43)I.r IAF

AraF = 0 (2-44)

Since the v component of velocity is zero on the centerline, this

boundary is also a streamline in the jet flow. For steady, adiabatic flow

with negligible volume forces, the total enthalpy along any streamline

is a constant. Therefore, along the centerline,

2oIAF = (CDT + 2KF constant (2-45)

Since the condition at the jet exit is specified, the centerline boundary

can be properly posed using this approach.

:OZZLE WALLS

The nozzle walls (BG, GH, and CH) are considered to be no-slip,

impermeable boundaries. This assumption gives the conditions that:

Ulwa] 1  0 (2-46a)

and

v wall =0 (2-46b)

Since the stainless steel nozzle consists of thin-walled material

with a thermal conductivity much greater than that of the surrounding

fluid, the nozzle walls are assumed to be at a constant temperature:
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T = constant (2-47)

This wall temperature is determined by applying a heat flux bal-

ance across the jet and freestream boundary layers as outlined in

Appendix A.

The pressure on each nozzle wall is unknown, but can he approxi-

mated by applying the degenerate form of the appropriate normal

momentum equation at each nozzle surface to obtain the following:

0 (2-48)
jnwall - s wall

In this expression n is the direction normal to the wall surface, and

s is the direction parallel to the surface.

INITIAL CONDITIONS

Since the governing equations contain time dependent terms, initial

conditions must be specified before the solution process can begin. The

specification of these initial conditions is somewhat arbritrary in nature,

althougn steep gradients must be avoided to prevent numerical divergence

during the solution process. Since the flow is predominantly supersonic

in nature, the incoming flow profiles will have a dominant effect on the

solution in the whole computational domain. The incoming flow conditions

are imposed on the complete domain as discussed in the section on initial

condition implementation of chapter 5.
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CHAPTER III

NUMERICAL PROCEDURE

The Pn.erical procedure consists of solving the governing equa-

tions with applicable boundary and initial conditions through the use

of appropriate finite difference techniques on a high-speed computer.

This procedure can be broken down into several elements which include

the finite difference coordinate system, the solution algorithm, and

the convergence criteria used in the computational solution. Each of

these areas will be discussed in this chapter.

3.1 CORDINATE SYSTE.

Domain of Computation

The physical domain of computation consists of a rectpngular area

defined by orthogonal coordinates (x,r) as shown in Figure 7. The mesh

consists of I points on the x ;.xis and JL points on tue r axis, where

II. and TL are dependent on the extent of the physical domain required for

the particular jet plume case of interest.

.te s!. St retchi _

In order to obtain an accurate numerical solution of a viscous flow-

field, the mesh spacing must be much finer in areas containing relatively

high gradients of the variable properties such as velocity, density, and

temperature. In the coflowing nozzle these high gradient areas include

the boundary layers on the nozzle walls and the shear lavcr in the wake of

the nozzle annulus. This stretching is accomplished through the use of a

patched exponential stretching scheme of the following form:
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Cri(j)
(e- - I fo

r(j) = in -- 1- for j = 1,: (3-1)
'm (e c - 1)

where I. and r, are defined as shown in Figure 8. The constant C is0

determined by the minimum spacing Armi n desired for the mesh next to

the wall boundary. Applying the desired Ar to equation (3-1) givesmin

Ar i
_ Loge (1 + Ln (e - 1)) (3-2)

m

The value of C is then obtained through the use of an iterative

Aitken extrapolation technique.

This mesh stretching procedure is applied in the radial direction

on both sides of the nozzle wall where boundary layers are present. It

is also applied in th, axial direction at the end of the nozzle where

the jet flow begins to expand or contract and where the near wakt. iue

to the nozzle annulus begins to form.

Map~tive Mesh

It is desireable that the fine mech remain in the areas of rela-

tively high velocity and temperature gradients as the solution progresses

towards convergence. This is not a problem in the case of boundary

la; ers that are adjacent to a fixed wall, but is a concern in the free

shear layer area generated by the nozzle wake and the interaction between

the jet and freestream flows. This shear region on the jet plume boundary

will deflect to a degree that is primarily dependent on the nozzle pressure

ratio. The fine mesh region should therefore also be adapted to conform

to thL general position of the shear region.

Hirt (21Y has used a technique in the soic;ion of free surface flows

that allows. the grid to adapt as the solution progresses. The following

kinematic equation is applied in the region where the shear layer is present.
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r = CA (v - u- (3-3)
3t Adx

This equation insures the condition that as the solution converges,

the physical slope of the constant n finite difference cell boundaries

is the same as that of the velocity vectors near each cell. When

applied in a finite difference format, the grid can then adapt to the

placement of the shear layer as shown in Figure 9. Details of this

process are explained in Appendix B.

Coordinate Transformation

The physical domain as typically shown in Figure 9 is mapped to a

unit square in the computational plane shown in Figure 10. The con-

stant n lines are aligned parallel to the centerline and the constant

11 lines are in the direction normal to the centerline. The numerical

algorithm operates on this coordinate system using the transformed

conservation equations (2-32). Care must be taken in generating the

physical mesh so that smoothness of the transformation coefficients

(x' Fr' T
Ix' and qr) is retained in order to reduce numerical errors

caused by the mesh configuration.

3.2 SOLUTION ALGORITLM

MacCormack's Method

The weak conservative form of the two-dimensional, time-dependent

Navier-Stokes Equations (eqn. 2-38) is solved using MacCormack's ex-

plicit finite difference method (22). This algorithm is an efficient

Lax-Wendroff type differencing scheme of second order accuracy which

utilizes time-splitting and two step predictor-corrector techniques.
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MacCormack's algorithm was chosen for application to the nozzle problem

because of its previous success in computing inviscid-viscous interact-

ing, flows, its stability in supersonic flow, and its computational

efficiency achieved by time-splitting the finite difference operators.

The computational solution is advanced in time by applying the

numerical operator to the solution of the flowfield at time t. This

can be written as:

1( , , t + Pt) = L(At) • U(,, r, t) (3-4)

w.ert, L(.'t) is the two-dimensional numerical operator representing

-.icCrmack's algorithm acting on the transformed conservation equa-

tions. Throujh the use of a time-splitting technique, this tw,-

di7,ensional operator L(A.t) is separated into two one-dimensional sweep

optrators in the T and ri directions. The operator L. (At) denotes

the solution of the equation:

+- -. + 0 :r '- 0 (3-5)
x j. 'r ',

i'- tht direction I)% time increment !t seconds. Similarly, the

op rt r ( t ) ro-prvents the solution of

I I 1(rJG) - It + - +--- r - -j---- (3-6)S." r j J r fj r o.

in the tj dircction by a time increment Lt seconds. The dependent

variale vector U( ,r.,t) can then be advanced in time as

i, ,, t + .'.t) = H../ (..t/M)'1 (.t)'L. / (At/N)]'* (, n t) (3-7)

With

= t. if At. .'t
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or as

/2t + (.t 1 t/N)L (At) L (t/N)] *U (- , n, t) (3-8)

with

At t if At At
T I TI '

In these equations M and N are the smallest even integers of the quotients

('t /'.t-) and (At,/.t) respectively, and At and At are the maximum
T -, I E n

allowable time steps in the F and n directions as determined by the

Courant-Friedrichs-Lewy (CFL) limit discussed in the next section on

stability. The values of M and N are usually equal to two for the grid

distribution used in the solution of the nozzle problem. This sets up

a truly alternating direction procedure that is desirable when gradients

exist in more than one direction.

The finite difference forms of the sweep operators consist of a

predictor-corrector procedure which increases the accuracy of the time-

dependent term evaluations. This method utilizes one-sided differencing

in the direction of sweep, but central differencing in the direction

perpendicular to the sweeping coordinate. At the completion of the

predictor-corrector process, this method is equivalent to a second order

central differencing scheme in two dimensions.

The L U(At) sweep operator represents the following numerical pro-

cedure. A predicted intermediate value is computed by the expression:

+'n+ =n At n n

= . ~ IF,). (F. F
" ,j ,j x i j ( ,j - l,j

1. ( o n  _ j 0o j n
+--- (r) (r. . r. G 1_(3-9)ri. r ,j i,j 1ij I-l j G -~ )

ij
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n+'
where t' .  is the known value at tite t, and 1.: is the intermediate

t'j i'j

predictor value. The actual computed value at time (t+Lt) is then

calculated by applying the following corrector algorithm;

Tn+ n+ t n+ n+'
.. = 1/2 , . + T (F l F. .)

1,j 1,,j 
+ i, , x ij i- " !  

1,

+ () (r j o  Gn+ 7 - r j ° '  (3-10)
r.2 r i,j i+l,j ,i+1j lj (0

i,]

In this r sweep predictor-corrector algorithm, the matrices F .nd

G are functions of the following difference quotients:

Um  -V U -U
T m Cm = L i+l,J_ 1j ij_+l i l ) (3-11)
i(U. j, t_ E 2A _

This scheme can be depicted graphically as shown in Fig. 11.

The L (At) numerical sweep operator is formulated in a similar

manner. The intermediate predictor value is given by the expression:

un+ ,n At Fn . n
- (-) [ (ij (F.

1,2 1,2 An x 1,2 ' , i ,j-1
Hn

+ ( ) Jo G n o t H.n  
(3-12)

rjo r i,j r.j ,j ij-i , ' + rj oi'j

The corrector value at time (t+At) is then given by:
n+l :n ,n+, At n -n+"

U..= 1/2 +U - [(r Flx 1 -Fi,i , ] 1 / i j i j A n., X) i j ( F i~ j + l i ~ j )

l Gn+Ln +

+ I (TI (rjo Cn+' - ri n+. j. t (3-13)riO r i~j i,j+l i,j+l i ,] li,j- I + rj o

The matrices F and G are now functions of the following difference

quotients:

m Um I'm -
m

F m G : w i+],j i-' i,j+l (-4FT..C.........1 -L 12+ 1) (3-14)
1,2 1, ,J 2,% Ar
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This scheme is also depicted graphically in Figure 11.

The MacCormack algorithm satisfies the requirements of stability,

consistency, and accuracy if the following conditions are met: It is

table if the time step limit satisfies the CFL stability condition given

in the next section. It is consistent if the sum of the time steps for

each of the sweep operators is equal, and the algorithm is second order

accurate if the sequence of sweep operators is symmetric.

STAlLITY (O.DITIO..

Although the stability of the finite difference equations cannot

",e anal-.,zed when applied to the complete set of Navier-Stokes equations,

:.ac~criack and Baldwin (23) have shown that considerable insight can

be guLined by separately analyzing the inviscid, diffusion, and mixed

derivative parts of these equations. Stability criteria are determined

by calculating the eigenvalues of the associated amplification matrix

for each part. If this eigenvalue procedure is applied to the inviscid

terms of the Navier-Stokes equations for flow in a Cartesian coordinate

systen, the following stability conditions emerge:

'.t (3-15)

and

rt•- (3-16)
r iv,+

where c is the local speed of sound. Consideration of only the diffu-

sive terms which contain , 2U/ x 2 and ,P / ,r in the co7mplete Navier-

Stokes t-2uations gives the conditions"

1/2 (3-17)
x + L r

Pr Pr t
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and

rLAt 1/2 Ar....(.3-18)
r -_(_ - + [z__)

Pr Pr t

Finally, analysis of the mixed derivative terms found in the Navier-

Stokes equations gives the condition:

/t -It :- r
x r - - ) 1 (3-19)

t

For the finite diff,-rence equations applied to the complete set of

Navier-Stokus equations, the stability criteria can then be estimated as:

mt minimum (.At At ) (3-20)

where

Ax

lu + c + -- + ) + -(>+) ( + C)] (3-21)xr: Pr Pr Ar tt

and

Ar
Lt1

(+ cr++ Pr + 77-. [-(i+) )(q + s)] 3-2r iv 1 + c + +
-  

-2 2) rW 2-

.r Pr Ax t ) _ ](tt

For the present non-Cartesian jet flow cases that were computed,

the maximum time step was calculated as:

-'t = minimum (At. , At I) (3-23)
i'j

where

AS
-' .. . + c +1I 21 __ 1

:(s + -r) +-- !-('*- )( > + )] (3-24)
i' AS P r Pr A'S t

t n

and

AS

t u + c + I --,- (2_ - + ) + 1 -(-+ t )( ;. + )] (3-25)
AS Pr Pr A S t
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where

AS = [(x 1  - x ) + (r - r (3-26)

AS = i(xi - x. j)- + (r i - rij )] (3-27)

u. = Naximum (u v u vi  ) (3-28)(i'j' ' ,j ' i-l j ' -l~j

u = Maximum (1i v.Lj ui j-l, v ij) (3-29)

The actual time step used in the numerical procedure was less than

this estimated maximum. Factors varying between 0.35 and 0.80 were used

during the computations. Flow solutions involving relatively large viscous

wakes containing recirculation regions required much smaller allowable time-

steps with CFL factors on the order of 0.35-0.40.

N1,71ERICAL DAY INC

Strong shocks imbedded in a flowfield being solved computationally

can often cause numerical oscillations (17) which may lead to program

failure due to physically unrealistic values of computed pressure,

density or temperature. These oscillations are caused by numerical

truncation errors and can be reduced by refining the prid in the areas

of shock locations. However, this can be impractical when the oscilla-

tions are of a transient nature caused by computational start-up or

re-start procedures, or where the shock location varies for different

experimental cases and mesh refinement for each individual case is

undesireable. In this situation, a fourth order pressure-gradient

damping concept as introdu( .cCormack and Baldwin (23) can be

applied to increase the stability of the numerical algorithm.

This damping scheme is applied in both the and n directional
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sweeps. In the numerical sweep, damping is implemented by replacing

Fii,j by (Fiij + FD  ) and Gii,j by (Giij + GD  ) in equation
iij i ~ jD ii] l ~ jD

(3-5). The predictor and corrector steps in this case are represented

by ii = i and ii = i+l, respectively. The damping terms FD and GD are

in the following form:

+ c +i+lc - 21i'j + Pi-ljI
FDi :x ( i ( ,Ii,j (Pi+l 1 j + 2P1.j + Pi-l'j

(01 .) (3-30)i+l,j - i,j

and

P.. 2P.. + P
G = (. . + c )Dij r 1ii,j iij) (Piij + 2P iij + P jii~j~l 11,2 i,j-l

i, - Uii'j-l ii,j . (3-31)

In the q sweep, a similar procedure is implemented by replacing F...

by (F,jj +F ) and . by (G G ) whereDiljj i ,jj (Gi + D j

FD . + C (lu. . + cP i+l,jj -2 
+ Pi-jj

1,jj IJJ ci1jj) (Pi+l,jj + 2P . . + P.
i i~jj Pi-l~jj

(17i+l,jj - Ui-l,jj) (3-32)

and

P. 2P, . +P.
G = (1V I + C i'j+l + 2P + 1,j-i

(P. . + P.,(Pij+l +  Pi,j i,j-i

W - U.) , r j ° . . (3-33)
i,j+l 1,J i,j

In this case the predictor and corrector steps are represented by

jj = j and jj = j+l, respectively. For both sweeps a. and xa are

damping constants where normally

a = 0.5 (3-34)
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This damping technique produces fourth order viscosity like terms

of the form

2 P 313 P 1tu-P 2  U + At An
4P-a 2 n~ 'In 4P 2

which are added to the difference equations. The magnicude of these

damping terms is proportional to the second derivative of pressure and

is significant only in regions of pressure oscillation where the

truncation error is already. adversely affecting the solution.

3.3 CONVERGENCE CRITERIA

Convergence, as applied in this section, refers to iteration con--

vergence as opposed to truncation convergence, which involves the

convergence of the solution of the FDE to the solution of the PDE as

Ix, Ar, and At - 0. Iteration convergence refers to the arrival at a

solution to the discretized Navier-Stokes equations within some accept-

able tolerance through the use of an iterative process. As stated

by Roache (17), there are no definitive criteria for iteration con-

vergence. A somewhat subjective judgement of convergence must be made

based upon an examination of the iterative behavior of the solution

flow variables. Different flow variables, as well as variables at

different locations, converge at different rates. If the slowest

converging variable in the flow-field is known, it should be the most

closely examined for convergence.

In the present case for a coflowing supersonic nozzle with a re-

latively thick base annulus, an examination of the flow variables

revealed that the slowest converging variable was the base pressure

of the nozzle annulus. The location of this base pressure is within
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the subsonic flow area involving recirculation in the wake of the nozzle

annulus as shown in figure 12. The flow variables in this subsonic

region converged much more slowly than did those in the predominantly

supersonic jet and freestream flows.

Since the coflowing nozzle problem primarily involves high

Reynolds number flow, the advective terms in the conservation equa-

tions dominate the viscous diffusion terms. A characteristic time for

a disturbance to cross the flowfield may then be characterized by:

tch uL (3-35)Ec ch

where L is the length of the flowfield in the direction parallel to

the characteristic velocity uch. For the jet problem uch was repre-

sented by u_. Since in general the magnitude of u was less than uo et'

this gave a more conservative estimate of the characteristic time.

The convergence criteria was then established by the following

procedure. The numerical solution was either initially started, or

restarted from a previous case. As the solution converged, the base

pressure was monitored until its magnitude varied less than + 1% for

one characteristic time period. At the end of this characteristic time

period the solution was stopped as convergence was achieved. Visual

comparison of Mach Number and density profiles over the flowfield con-

firmed the convergence of the solution using this procedure. A sample

base pressure convergence plot is shown in figure 13.
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Figure 13. Typical Base Pressure Convergence, P /P_= 0.527.
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CHAPTER IV

BOUNDARY AND INITIAL CONDITION IMPL1ENNTATION

As in chapter two, boundary and initial conditions must be

defined in order to solve the conservation equations which govern

the flowfield. Values of the dependent variables for points on

the boundaries of the computational domain must be specified in

order for the numerical operators to solve the flowfield correctly.

This section presents the numerical formulation of the boundary and

initial conditions used for the solution of the coflowing nozzle.

The conditions were presented in a mathematical context in chapter

two.

4.1 THE V, PSTREAM BOUNDARY

The flow properties on the upstream boundary (AB and CD of

Figure 6) are held fixed for the duration of the computational

solution. The values of these properties were derived in the

following manner. In the external flowfield, a parabolized N'avier-

Stokes solution (24) was computed for the ogive body used in the

experimental coflowing nozzle tests as shown in Figure 14. This

solution determined that the pressure gradient at the inflow bound-

ary in the external flow stream i- negligible, and that the static

pressure at the inflow boundary is 99% of that in the undisturbed

flow in the wind tunnel. The static pressure along the ogive body

surface shown in Figure 15 was then used as an input to a two-

dimensional turbulent boundary layer code (25, 26) along with the

other specified freestream conditions (M TO-, Re , T w ) to produce
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Fipure 15. Computed Static Pressure Variation along the Ogive

Body using a Parabolized Navier-Stokes Solver (23).
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input vlo'itv component and temperature profiles at the upstream

boundary. The conservative variables on this boundary (CD) are then

calculated using these profiles and the static pressure along the

boundary. Flow variables on the upstream boundary in the jet flow

(AB) are deturmined in a similar manner. The same boundary layer

code is applied using the jet exit conditions and the length from

tho. noz.le throat to the nozzle exit plane as the boundary layer

startina leng:th. Again, profiles for the velocity components and

tU':pvrature art obtained along the boundary. Values for the conser-

\at i:,L variables are then computed using these profiles and the value

of the pressure at the jet exit. Since the value of the vertical

velocity component is zero on the centerline boundary, a polynomial

fit is used to set the vertical velocity profile from the edge of the

boundary la%'kor to the centerline.

4.2 711F FPPER BO'NDARY

The upper boundary, labeled DE on Figure 6, utilizes the simple

ave. procedure outlined by Roache (17, pp 282-283). This procedure

assumes that properties are constant along a straight, left-running

characteristic line passing through each point on the upper boundary.

The position of this line running through a boundary point (i,JL) is

deterAined by the angle (G + C), where

M arcsin (1/M.) (4

is thLi local >ach angle for supersonic flow, and

arctan (v/u) (4-2)

is the local fiow direction. The properties on this characteristic
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line are determined by linear interpolation ii,\olving the properties

at points (i-1, IL), (i-1, I.-1), and (i, .l,-i) as shown in Figure

16. Points (i-1, .1I-1) ind (i, .I-1) ort. pints interior to the

computational domoin, and point (i-1, IL) is either a point on the

inflow boundary (i = 1) or a pre\viouo.v de fined point on the upper

boundary resulting fro:: the left to right swe.p along the boundary

using this technique.

As shown. in Fiure 16, one of two possibI interpolation schemes

is applied depending on the local values of the quantities ( 1 +

and (:,r/ix) . For the case of tai. (Li + ) 'nrx, the

position of the characteristic line lies between the points (i-l, JL-I)

and (i, .1-1). The properties at the point p, and thus at point

(i, 3I.), can then be determined by:

f f = f + ( )(fi - ) (4-3)
i ,IL p i-I ,IL-1 A x i JIL-1 i-l ,JL-1

Ihe value of ;, and thus the position of the point p, can be deter-

mined b% the following procedure. If the quantity w is defined by:

w = tan 190' ('\+ )] (4-4)

then by geometry:

w = (Ax- )/Ir (4-5)
p

If the interpolation procedure of equation (4-3) is applied, then

w = w w
= i-l,.iL I + ( (w L- - w (4-6)

i- , 1i ,.JL-1 i-I ,IL-1

Equating (4-5) to (4-6) and solving for gives:

(Ix/Ar) - wi JL- 1

(w i L - 1 ,JL l)/,x + (1/,*,r)
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For the alternate case of tan ( , + ) (.r/',) thein i-,,IL-l1

position of the characteristic line lies between the points (i-I,

JIL-) and (i-I, I1). The properties at p are then determined by the

equat ion :

f = = 
f i-i - + (/Lr)(f i-l ,JL - fi-l, JL-i )  (4-8)

In this case, the quantity w is defined as

w = tan (;. + ) (4-9)ci

and b. geometry

I"!- ) x (4-10)
p

The interpolation scheme for w now gives the expression:
p

wi- l  + (,/,r) (w - w ) (4-11)

Asain, equating (4-10) to (4-11) and solving for , gives:

(liA i- I _ IJ- I
,: w r.- wi_]/Zr_ +(1/A)(4-12)
(il,JL Wi-1,JL-1)/Lr +

:\plyinz the computed values of the interpolation length to the

respective interpolation equation (either (4-3) or (4-8)) gives the

proper value of the desired flow variable at the boundary point (i,

JI.).

4.3 THE ),.2:STP, A BCMDARY

The downstream boundary (EF) is placed in a region where gradients

in the, fl,- var i ablies are expected to exist. A quadratic extrapola-

tion can bV usd on tlis boundary that lets 4/4Y. and f / "x be

nonero , thus st is ;-- in- thi s grad ient condition. Assuming a constant

_;rid s 'I nin near this boundary, Taylor series expansions can be

per fored in the following. manner from a point (1I1- j) on the botndar

the fI, ,l0 winc, three points interior to the boundary



2 "23
f + :.. + - ,xI j -.x-1 IL,j) (4-13)

3
f f + f 9-+ 0(+x 3 f--IL, (3I-2,j I.j .. lj 2 IL,j (4-1)

=L, I I,j 2 jILj 3 I
,AX dX

If the assumption is made that the last term in each equation can

ht nui lected, i e.
3 3 f

0 (4-16)

tl. equations (4-13) through (4-15) can be solved simultaneously to

giv', the following expression for the boundary point (IL, j) in terms

of the interior points:

f, = 3 f - 3 f + f417
f L,j IL-1,j IL-2,j +  IL-3,j (417)

'his condition works well as long as large pressure gradients

do not exist at this boundary, as in the case when a normal ,chock wave

exits the boundary. If this does occur, the term involving -, 3f/)x3

is no 1oncer neglegible. Equation (4-17) then can become numerically

unstable.

'Tmerical divergence did occur when the previous extrapolation

condition was applied to regions of subsonic flow present at this out-

flow houndar. Therefore, the following first order, zero gradient

condition was applied at points (IL, j) when the Mach number at points

(IL-1, j) a found to be subsonic:

fi ., ; = .fI - , j( - )

4.4 1 {E (;E:TEI.I NE

'The c(enterl ie bhoundary (AF in Figure 6) is a line of svmmet'trv
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with no mass or energy flux across it. The vertical velocity component

condition (eqn 2-36) is applied by setting:

%i,l = 0 for 1 i - IL (4-19)

The symmetrv conditions for the density and u component of velocity

((,qns 2-37 and 2-38) which are valid only at the centerline are applied

in the following manner. Taylor series expansions are performed for

and u from a centerline boundary point (i,l) to points (i,2) and

(i,3) which are distances Ar and ILr, respectively, above the center-

linL, boundary. The series expansions to these points give the following

equations for density:

+ r +- + O(Ar 3  (4-20a)i,2 'i, r i,l 2 :r r3 il

Kr +Kr+ + (Yr l (4-20b)

i 3 'l r 12i,l:r 3 1

If the centerline svmmetry condition (2-37) is applied and the

hig er order term in each equation is neglected, these two equations

can he solved simultaneouslY to obtain:

= , 2 - 3 (4-21a)2

(1 - I)

A similar expression can be obtained for the u component of velocity:

F2

Y-1i, -ui,
u u2 = - ,3 (4-21b),] (K2  - 1)

The previous extrapolation boundary conditions for the density and

tli, horizontal velocity component were applied only to regions of super-

sonic flo., at th, centerline. Undusireable pressure wig:'les occurred if

t~h.es conditions were applied to regions of subsonic flow. The following

first order zero gradient condition was applied at the centerline points



(il) when the Mach number at points (i,2) was found to be subsonic

i,1 l i,2 (4-22a)

u 1 = u (4-22b)

Since the v component of velocity is zero on the centerline,

this boundary can be considered as a streamline. As discussed in

chapter 2, the stagnation enthalpy is then constant on this boundary.

Since the total enthalpy at the inflow boundary is known, then

H i'l= HolI'i for 1 < i < IL (4-23)

Since the value of u. has been previously determined by equationi,l

(4-22), the definition of the stagnation enthalpy can be expanded to

determine the value of temperature at each boundary point (i,l):

T il = ,+ [(U - (ui ) 2]/2C (4-24)

The values of the primitive variables ;, u, v, and T have now

been determined for each centerline boundary point, so that the re-

quired values of the conservative variables can be computed along

this boundary.

4 .5 THE NOZZLE WALLS

The nozzle walls (BC, Gb, and CII in Figure 6) are treated as

no-slip, impermeable boundaries. The no-slip condition is imposed

on the three wall faces by impo virig the following conditions (see

Figure 17):

Inner wall

u. = v = 0 for 1 i < IW (4-25a)

S,,JWI i,JWl --
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Outer wall:

u = O= 0 for 1 < i < IW (4-25b)

Base (vertical) wall:

ulW,j v,j = for JWI < j < JWO (4-25c)

As discussed in chapter 2, a constant wall temperature is im-

posed on the nozzle walls. This condition is applied simply as:

Ti,jWI T i,JWO = TW fpr I < i < 1W (4-26a)

and

TIW,j T IN for JA4I < j < JWO (4-26b)

A first order pressure gradient condition derived from equa-

tion (2-42) is applied on each wall. This is imposed as:

Pi,JWI = Pi,JWI-i for I < i < IW (4-27a)

pi,Iwo = PiJWO+1 for 1 < i < IW (4-27b)

P1W,j = PIW+I for TWI -j JWO (4-27c)

Since tht points (IW, JWI) and (1W, JWO) are positioned at

sharp corner ps. -_ the simple pressure condition applied in

equation (4-27) is i ;pplicable. An averaging scheme was there-

fore used to allow te :rte to adjust at the corners. This

averai;in' is appI itd as:

P = (' + P  /2 (4-28a)lw W , iwi-I , 1 , :1W

and

p 'i . p 1/-2 (4-28b)

Tht, primitive variables u, v, P, and T have now been defined
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on tie wall boundaries . ',hc rcquired valus of the' cor. ervat iv,

var jab lt. can then hc co--puted on this boundar.

4.6 IITIAL COL II T()'LS

As discussed in chapter 2, initial values of the conservat ive

variables must be imposed over the computational domain. Since the

incoming flow variables are fixed in time, they are initially imposed

over the complete computational domain as follows:

, ,', j .'I and JWO (-- 2 q4

The value of the u component of velocity in the wake region (Y:1 - j

JWO) would be zero from the input profile. Therefore, the ,1 con-

ponent in the wake is set to grow exponentially using the following

equat ion:

u = k 0(l - e IW'j -xij B (4-30)

where
(r, r - r 1

k iu I + (U(y1 - Ul,JWIl) -IJ-) (4-31)" ~ ~ , I (rlj( 1  r rl1~il

f or IW i II. and JWI _ j ' JWO. Use of this scheme allows the

velocity in the far wake to be close to that of the two streams, thus

accelerating convergence.

Once an initial case of the coflowing nozzle had numerically

converged to a valid solution, each succeeding case was initialized

by impoqing a new jet input profile on the inflow boundary of the

preceding converged solution. This technique allowed the new soliu-

tion to converge at a much greater rate, since the subsonic recircu-

lation zone in the near wake was already in existence from: the previous

sol ut ion.



CHAPTER V

TURBULENCEMODELING

The experimental tests used as a basis for the computational

6solutions were conducted at a Reynolds number of 2.2 x 10 , based

on the ogive body length and the external flow conditions. The

external flow in the region of the nozzle is thus expected to be of

a fully turbulent nature. Reynolds numbers in the interior jet flow

5 6
covered a range from 1 x 10 to 1.7 x 10 , based on nozzle exit con-

ditions and the nozzle throat to exit plane length. Considering the

effects of compressiblity and the existence of a favorable pressure

gradient in the divergent portion of the nozzle, a transition Reynolds

5
number of 5 x 10 was used to determine the condition at which the

jet flow possessed turbulent characteristics (27).

The turbulent nature characteristic of these flows can be accounted

for in the computational solution by a variety of eddy viscosity models

ranging from locally dependent algebraic models to the more complex

higher-order closure models such as the turbulent kinetic energy methods.

Although the higher order methods can account for the time history of

the turbulence in a flow, they require that accurate initial profiles

of the turbulent shear stress be known or reliably calculated (28)

If this initial profile condition cannnt be satisfied, then this type of

prediction method cannot be effectively utilized. Since this proved to

be the case for the jet problem under consideration, locally dependent

eddy viscosity models were carefully applied over the computational

domain.
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As shown in Figure 18, the computational domain contains three

distinct recions in which various eddy viscosity models are applied.

These regions consist of an area containing boundary layers, a far wake

region downstream of the nozzle exit, and a near wake region close to

the nozzle exit plane.

5.1 BOUNDARY LAYER MODEL

In the first region, the dominating flow features are the boundary

layers along the nozzle walls. Since the experimental boundary layer

thicknesses are at least an order of magnitude smaller than the nozzle

radius, a two-dimensional turbulence model was judged to be sufficient

for the axisymmetric cases. The eddy viscosity model applied in this

region is a two layer Cebeci-Smith model (29). The inner layer of

this model accounts primarily for the laminar sublayer adjacent to

the wall, with the outer layer accounting for the remainder of the

boundary layer region.

The expression for the inner model is based on Prandtl's mixing-

length theory, which can be written as:

= 2 Jut

i 7 i -(5-1)

where ut is the local tangential velocity parallel to the wall surface,

and r is the normal distance measured from the wall. The mixing lengthn

in this model is adapted from Van Driest's sublayer model, and is ex-

pressed as:

- r l wn w

i 0.4 rn (1 - e 2 6 1, ) (5-2)
1n
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This inner model assumes the flat plate pressure condition (dp/dx

0), but could be modified to account for a pressure gradient in the

direction parallel to the wall within the sublavcr.

The outer region eddy viscosity model consists of a Clauser-type

displacement thickness model defined by the equation:

= 0.0168 5 -(5-3)

where u is the appropriate tangential velocity at the boundary-layer
e

edge and
uf f (I - t) d, ( 4
u e n

is the incompzessihle displacement thickness. This model also includes

Klebanoff's intermittency factor defined by the following equation

1 = [I + 5.5. ( 6/,') 6 -1 (5-5)

The inner and outer regions of each boundary laver are defined by

the requirement that the eddy viscosity remain continuous across the

entire laver. This is accomplished by applying the innei model outward

from the wall until L. = E. at a value r . The outer model is then applied1 c

from r outward across the remainder of the flowfic. the boundary
c

layer region. Figure 19 shows a typical eddy - sit refile across

this region.

5.2 FAR WAKE MODEL

In the region downstream of the nozzle exit, the initial boundary

layers on the nozzle walls merge to form a shear layer containing an

imbedded wake region. This region in the flowfield can be further

divided into two separate areas: the near wake region close to the

nozzle exit that contains flow features such as the corner expansions,

a "deadwater" zone, recompression shocks, and the far wake region further
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downstream where the flow eventually tends to a similar free shear layer

type of flow. The eddy viscosity model for the far wake region will be

discussed in this section, and then be extended for the near wake region

in the next section.

1h e eddy viscosity in the far wake region is in the form of the

following Prandtl mixing length model:

1 ;, .-~ !(5-6)

where is defined as the vorticity

U r - (5-7)

and the mixing length uses the same formulation as that of Dash, et al

(30,31) in their wake mixing length model for the core region of a co-

flowing nozzle:

= 0.065 i (5-8)
w

In this model, t is the representative thickness of the shear layer atw

any axial position in the wake. This model accounts for the variation

in eddy viscosity across the mixing layer through its dependence on the

local value of vorticitv. As in the eddy viscosity model utilized by

Baldwin and Lomax (32), the vorticitv profile across the mixing layer

can be utilized to determine the thickness parameter . This eliminatesw

the somewhat complicated process of finding the outer edges of the shear

layer based on velocity profiles for each axial position in the '-omputa-

tional flowfield.

For the axisv;:imetric coflowing nozzle cases that were solved nu:T1eri-

cal ly, the ma:imum absolIutc vialue of vortic ity in the Wake was found to

be in the following range:

5 1 6 -1I x 10 x lax sec (5-93
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Thc cutoff value used to define a representative edge of the mixing

laver was:

= I x 10 sec 5-10)

This viliti -ive a reasonable value of I as shown by a typical vorticity
w

profile in Figure 20. The absolute value of vorticity typically dropped

to less than one percent of Wo within one gridpoint outside of the
max

cutoff point.

A flat plate validation case was computed using the far wake model

to check its accuracy in a known turbulent flowfield. The data of

Tovoda and Kirivama (33) for a flat plate in turbulent flow at a >ach

number of 1.6 was used as the basis for a computational solution. The

velocity defect in the wake obtained both experimentally and numerically

is shown in Figure 21. As shown by this figure, the results goenerated

by the nur.erical turbulence model compared very well with the thin flat

plate data. Further details of this computation are listed in Appendix

(.

5. ' NFKAFk\F,,M()T,)'UEL

1he accuracy of a Prandtl type mixing length turbulence model is

substanti al lv dependent on the use of length scales that are truly re-

presentative of the flow in a given region. In the far wake region

w,.ere a single mixing layer exists, the previous definition of the length

s ale involving is valid. However, for the case of a coflowing nozzlew

with a thick base annulus, several length scales need to be defined in

fl. near wake region. As shown in Figure 22, the existence of the sub-

sonic, res-ireulating "dead water" region adjacent to the nozzle base

wa ill o plicates the flow simulation. In the near wake, the length

al- ,, s ut tran:iti n from the appropriate boundary laver thickne.-s

(4
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at the no7 1e exit plane to the single mixing layer thickness ( ) thatw

c.:i t.- in thb2 far wake region.

!.i,s trr>iition is accomplished using the following procedure. The

<:.t r ir c'2e of the mix ing layers in the near wake are determined using

Lhe vor ti citv limits previously defined for the far wake. The interior

edes of the dual shear layers are then defined by the Mach 0. 5 contour

line surrounding the "dead water" reg4ion as shown in Figure 22. The

vorticitv turbulence model defined by equations 5-6 and 5-9 is then applied

in the near 4ake reg ion from the end of the boundary layer zone to the start

of the initial mixing zone with

= c in the free stream flow

= .in the jet stream flow

0.5 (S + S.) inside the Mach 0.5 contour of the "dead water
0 1

region

An initial mixing zone, one base height in length, is used to smoothly

adjust the thickness of the dual shear layers (0 and .) that exist in
0 1

Lhe expansion and recompression zones of the near wake region to that of

tine single shear laver (1 ) in existence further downstream. The follow-
w

ing e:-:ponential equation is applied in this region:
-k]

( ) =- ( I S, - i ) 1 (5-11)w x wlx o or j x.wX0 0 i

where k is determined by the expression
x

2 0.5) 5 -12)

y B YB B

and the value of x lies in the following range:

0 - x x + 0.5,

Til., point x, is (entered in the mixing region. It was determined that

the p() it ion of the midpoint x must he specified. If a]lewed to iloat,

05



the near wake eddy viscosity region stretched to unrealistic lengths

and gave erroneous values of nozzle base pressure. Using the very

slightly underexpanded experimental case (P./P = 1.03) as a basis,

the midpoint x was varied to obtain its effect on nozzle base pressure.

As shown in Figure 23, the value

x / B = 2.0

gave the best agreement with the experimental data. This value was

then fixed for the entire series of flow calculations at the various

pressure ratios.

A two-dimensional wedge-flat plate validation case was computed in

order to obtain the accuracy of the turbulence model in the near wake

and transition zone to the far wake. The data of Pom, Seginer, and

Kronzon (34, 35) for a one centimeter thick wedge-flat plate in turbulent

flow at a mach number of 2.25 was used as the basis for a computational

so lution.

All of the near wake features were accurately reproduced by the

co.:puational solution, and are discussed in Appendix D. Both the static

pressure axiallv along the line of symmetry and the pitot pressure p.o-

files in the near wake are in good agreement with the experimental data.

Tihe variation in the mixing length (U) used in the turbulence model is

sho, in Figure 24. This figure exhibits the correct physical behavior

of the growth of 4 as the flow expands around the corner and the subse-

quent decrease in , as the flow recompresses in the near wake region. The

exponential growth in the transition region is also evident. This case

confirms that the eddy viscosity model used in the coflowing nozzle is a

reasconable one that should account for the turbulence effects in a correct

manter .

() (,
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CIL\PTER VI

NPIERI CAL RESULTS

This chapter will discuss the numerical results of the computa-

tional solutions using the algorithm, boundary conditions, and

turbulence nodeling detailed in previous chapters. The first section

of this chapter will duscuss the experimental cases taken as the basis

for comparison with the numerical solutions for the coflowing nozzle.

The ne::t section discusses details involved in the actual computa-

tional procedure. The last section covers the comparison between the

experimental and computational solutions, including some analyses

of the accuracy of the simulations and discrepancies between the

numerical solutions and the experimental data.

6.1 E)xperimental Data Base

As outlined in Chapter 1, the data of Bromm and O'fonnell (16)

is used as the experimental basis for this research effort. Super-

sonic fields of flow generated experimentally contain both highly

viscous flow regions as well as shock structures ranging from weak

regularly reflected shock waves to the strong Mach disc shock forma-

tion. Five different experimental nozzle pressure ratio conditions

are used as the basis for the computational solutions. Nozzle base

pressure measurements and schlieren photographs are the basis for

experimental versusq computational comparisons.

<.ode I

The mudeI, a stainless steel body of revolution, consisted of
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a 16.25 inch ogive forebody and a one inch diameter cylindrical

afterbody (see Figure 15). The total length of the model was 7.5

inches. The model was supported by a 10' thick hollow side strut

that acted as a conduit for the air flow to the jet as shown in

Figure 5. The effects of this strut were found to be negligible

on the flow field downstream. This model was fitted with a nozzle

which gave essentially isentropic flow with an exit Mach number of

3.00. The inner diameter of this nozzle at the exit plane was 0.742

inches, and the length from the nozzle throat to the exit plane was

1.20 inches. Four base pressure orifices were used to obtain the base

pressure measurements as shown on Figure 5.

External Flow

The external flow conditions were generated in the NASA Langley

9-inch supersonic wind tunnel. The free stream Mach number was set

at 1.94, and the free stream Reynolds number was fixed at 2.2 x 106

based on the body length of the model. A turbulent boundary layer

on the model at these conditions was insured through the use of a

transition strip near the nose. The tests were conducted at a

tunnel stagnation pressure of one atmosphere (assumed to be 2116 psf).

Using these given conditions, the stagnation temperature of the free

strear was calculated to be equal to 580.5°R.

Jet Flow

7he flow just upstream of the jet exit plane was given to be

at a ':ach 3, zero divergence angle condition. The total pressure

in the jet flow was varied to obtain the desired nozzle static pressure

70



ratio. The jet static pressure at the nozzle exit plane was not

measured directly, but was calculated using the given nozzle area

ratio and the jet total pressure. A total temperature in the jet

flow was not given experimentally, but was assumed to be equal to

the freestream stagnation temperature (580.5'R).

6.2 Coputational Petails

Solutions were computed for the coflowing nozzle at the follow-

ing five nozzle static pressure ratios Pj/P = 0.150, 0.251, 0.527,

1.03 and 1.59. These solutions were all performed on a CDC Cyber 175

digital computer located at Wright-Patterson AFB, Ohio. The average

rate of data processing was 0.0C)15 second per grid point per iterative

time increment. In this section further details of these computations

will be discussed.

Grid Parameters

Important parameters of the computational grid including the

number of grid points and axis length utilized in both the axial

and radial directions are listed in Table 1 for each nozzle pressure

ratio condition. The value of the axial field length includes a

I gth increment of 0.4 upstream of the nozzle exit plane, with the

exit plane at a value of x/r. = 0.0. A compact 45 x 45 point gridJet

was used in the two most highly overexpanded cases (Pj/P = 0.150,

0.251). Twelve additional grid points were then added in the axial

direction downstream of the original grid to form a 57 x 45 grid for

the next case where P./P = 0.527 (Figure 25). This methodology gave

a consistent cell length in the axial direction for each of these
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three cases in which both a regular shock reflection (Pj/P- = 0.527)

and Yach discs (T1./P = 0.251, 0.150) should occur. The computational

domain was then stretched using the 57 x 45 point grid to the degree

necessary to cover the phenomena of interest for the two underexpanded

cases .

Minimum grid spacing in both the axial and radial directions

occured adjacent to the nozzle walls, and was set at:

/x/rje t = tr/rje t = 0.030

The patched exponential stretching outlined in chapter 3 was then

applied to form each grid initially for the various cases. The adap-

tive grid procedure was applied in the radial direction during the

solution procedure as discussed in Chapter 3 and Appendix B to obtain

the final grid geometry for each case.

Table 1. Computational Grid Parameters

P./P IL JL XLT/r. YLT/r.j , et jet

n.150 45 45 3.4 3.0

0.251 45 45 3.4 3.0

0.527 57 45 4.4 3.0

1 .fl3 57 45 6.4 3.0

1.59 57 45 8.4 4.0

Coarse Crid Effects on Boundary Laver Resolution

The numerical solution of the Navier-Stokes equations can in-

volve significant truncation errors in regions containing high velocity

iradcnts such a within turbulent boundary layers when relatively

course cohluta" lonal grids are emploied. Errors in computed velocity

gradients i;nvo< ed in shear force terms at the wall can result in erron-

eouc vol uec of tI,e prec;sure gradient along the wall. The extent of
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these errors can be real ized by assuming the exist tnce of a tur-

bulent boundary Liayer possessing a velccity prof ile in the fol lowing

form ( ):

+ + +
u = v •V 11 (().1a)

+ + ,.+ + lbu 50 In(v ,  + 5 11 11
= 2.5 + 5.0 I ' BL edge

where

+ 4- +
/Iu'./ and v+

w w

Since the dorinant term in the shear stress is the gradient ---,

a comparison of the value obtained using this profile can be made

with that obtained using the numerical algorithm. MacCormack's algorith,

computes this gradient using a first order finite difference in the

direction of the sweep for the predictor step. At the wall this grad-

ient is comiputed as:

U =  U /y (0.2)

v w ijw+l w

whre jw+ 1 is the first grid point above the wall, and tv is the

grid spacinig adjacent to the wall. If a nominal Reynolds number of

IxI ( basud on bod' length, is applied to the previous turbul ent velocity

profile, the ratio of actual wall velocity gradient given by the pre-

viousc profile to that computed using equation 6-2 can be displayed as

a function of the ratio of u velocity component at the first point

a-ove the wall to the freestream velocity as shown in Figure 26. For

grid spacinc! substantiall greater than the sublhaver (u]/u . 4 75)
I e

excessive error in the computed velocity gradient occurs. SinCe in the

coflowing jt,t solutions the previously stated minimlum'r grid spac ing

g ive.s values of (uI /u ) = 0.72 and I /u ) 0.90, a crreCt iOn

is neded. tbis is ac c Um1,l isled b\y appI ling t he value of f given by a

7,4
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a louiidIr I aver arial is1 at thlt julf low boundary aln IOI he nIozzle V'aIlI

when j= jw instead of using, the standard difIferenc ing procedure in

t he aI ,o r i t h:i. Th is p rocedu re has resulI t ed in smuooth p ressure prof ilIes,

near t V in1 lOW 110'indarx' instead of ;liight pressure jum7ps preyviouslIy

ohs--er'.ed in course mesh cases. Thiis concept is analog ous to the wall1

functions d:scribed b%- launder and Spaul ding (37) and emrployed 1,,,

Pe~erv and Forester (38).

Ex t e rn ali O-v-- Z Er a!mLt e r s

Vausfor the externa Ilo va nab Ines were input nu7merical 1-,

by a ppIcing, the e-ipefimental values of >~,PTand thne houndar:.

layer prof ilus generated for use on thef inflow houndar-,. A \vilue f-r

the, turhuleut skin frict ion coefficient of CF= 0. 0028F3 was hz e

I rem: tlhe boundary laye r input profiles and was applied on the e-

ternal nozzle wall as discussed in the last section. A wall tem-per-

ature of 551'P\ was calculated using the analysis in Appendix. A.

Iie wall tepcraturcn was, given a constant value for all five cases,

s n~tie t no]csjs showed that this temperature should not vary icr

tho i T de men over the rainge of siml-aated flow c )nditions.

Vt ov i et e rs

senuierical jet field o' flow was d'-term'Iind 11" applvinc the

mtAvalu,'s )I thle jet "c.numbe ,r andl total temp-eratu1re

lynvn in tht: previous, set iou logWith thi vaIles Of t.e, !,t to, il

press!ure an,, skin frict iou cot,i, i ent l isted in loIe.S ince tlit

mTI 0 n ei t Ue!: 'rat ore wus c oii(Ie r ed t (1 h)e CII s t ou~lt ,te Vo L no ,

for tht. internail nozzle wall was. also set at ')51' . As, 'he.,

ta'lte, the t ate (,f the jet 1Iouuidar%- laver in a .1 o the cns~

(,pt th nw.. <t noz7 p ressu rec ra t io on(Iir t~ i / P Ir

7(



wa cnsicI rd ec b e t ur buIc it a t thI e nozzle c exi t pl a ne . Since the

iso. w:ctc P. /1PL = 01.251 possess;ed a Rey-no]lds number below, the pro-

lins1 s'-t traInsit ionl Point , a :. '1 ut ion using a l ami nor jet bouindary

la',c r wasr als I Ob1)ta ine(2d. At this pressure condition, barb the Ilauinar

and! turbulent Jet boundary low:ers, ga've nearly, idenmtical values for the

no?: ,Ic laise pressure- and nocr:mal shock position. Hlowever, the aiAnar

case cxlibited a nil i shear liver usc i 1lit ion for the duration of

.c so lotion procedure. For this rooson the results of tb e turbul1ent

cisc are presented . It is interesting to note that no) mixilug 1lyer

oscillations, were observed in the other lan:-inar jet condition (PI/'

.5t

Table 2. Computational Jet V'ow Parameters

P 1 p1 (f) Re xi 0-5 Bound . Lover C fx 10(3
Character

.5 1 13B). A1.11 laminar i

11 1- 2 738,,. 2. 70 Tu rb ulIent: 3.39q

7 5757 . 5.67 'T urbulent 2.8'

I~~~~ it rr 110 Tuulent 25

1 7' 1W)-4. 1 7 .11 1Turbul ent 2 .20i

Polr:. n adic-4 p i >U'P

-;Ie)spc ifi, mv n<r.....una-coditions gi-on in chapt tn

a-i p p-'e~ i;; >2 I- d- o-- .,~i , deil i nlC ordr t Ic1

SuIlurI'i n-j for the c: Ic-sin %-', .- siguil lca:lt pt v>sn

(-n nt r.lJ with ic 0] ;i ica-ticc of tilc Uiti .P o.cI.iiXIIci;''

1 <-<i~o r ti 4 nc;:] s-a l1ifc .1, iff i:lI Ii.

t<1 t,> 1, tic 14T4 t rca ; cJ ~: ;cd t
4

j it. Ic, -t i I c.i:--~>
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significant portion of the flow along each boundary was subsonic in

nature. This condition only occurred for the highly overexpanded

case (PI/P- = 0.150), where a substantial embedded subsonic region

exists downstream of the Mach disc shock structure.

The quadratic extrapolation given by equation 4-17 produced very

reasonable results for those cases where the outflow was either entirely

supersonic, or only subsonic at a very few points in the nozzle wake.

For the case where a substantial area of subsonic flow existed behind

a Mach disc structure and extended to the donwstream boundary, num-

erical divergence occurred when equation 4-17 was applied. A second

order zero gradient condition was then applied in regions of subsonic

flow along this boundary. Application of this condition did not

produce numerical divergence, but did give unrealistic pressure jumps

at this boundary. A first order zero gradient condition given in

equation 4-18 was then successfully applied to subsonic regions on

this boundary with reasonable results.

An almost identical situation occurred along the centerline

boundary for subsonic regions containing fairly strong radial flow

gradients close to the centerline. Both the extrapolation condi-

tion given by equation 4-21 and a second order zero gradient

condition produced unrealistic radial oscillations in the numerical

solution (called "wiggles") within these regions of subsonic flow.

The application of a first order zero gradient condition given by

equation 4-22 helped reduce these oscillations to achieve a reason-

able solution.

Two solutions were also computed where first the downstream
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boundary, and subsequently, the upper boundary were repositioned

greater distances from the nozzle as discussed in Appendix E. No

changes were detected in either the shock structure or the nozzle

base pressure coefficient. These test cases validate the effectiveness

of these boundary conditions at the positions utilized in the actual

nozzle solutions.

C onverence

As stated in chapter 3, the numerical solutions were either

initially started using only the boundary layer profiles across the

computational domain, or restarted from a previous solution by apply-

ing new input profiles at the jet inflow boundary. Solution times

based upon the convergence criteria discussed in chapter three varied

significantly for the two methods of initial startup. Solution times

on the Cyber 175 using only the boundary layer profiles to form the

initial conditions were approximately 3.0 hours for V~ie 45 x 45 point

mesh and 3.8 hours for the 57 x 45 point mesh. Solution times for

cases restarted from previous solutions were approximately 1.7 hours

for the 45 x 45 mesh and 2.1 hours for the 57 x 45 mesh. The large

difference in these solution times is mainly attributed to the length

of time required for the subsonic recirculation region in the near

wake to form and achieve a steady state condition.

6.3 Comparison with Experimental Data

Comparisons between the numerical solutions and the experimental

data can be made both qualitatively and quantitatively. Figures 27

through 31 give a good visual comparison between the numerical solutions
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depicted as Mach number contours and the experimental schlieren

photographs. In these figures the computed solutions above the

centerline were reflected to give a total nozzle flowfield to compare

with the schlieren photographs. All features typical of afterbody

types of flows such as the shock structure internal to the jet core

flow, external recompression shocks, and s'.ar layer development are

readily discernible and in very good agreement with the experimental

data.

As shown by the previous figures, the pressure condition at which

the jet flow shock structure transitions from a regular reflection on

the centerline to the Mach disc formation lies between the two cases

where P./P. = 0.527 and P.i/P. = 0.251. Although the shock structure

near the centerline appears similar in the computational solutions

for these two cases, an enlargement of this region as shown in Figure

32 reveals several differences. The shock strength (related to the

Mach number jump across the shock) is much greater in both of the strong

Mach disc cases (Pi/P 0.150 and 0.251) than in the regularly re-

flected case (P ./P. = 0.527). The sonic lines in this region are

displayed as dashed lines in Figure 32 in order to easily identify

regions of subsonic flow. Both Mach disc cases contain areas of sub-

sonic flow downstream of the shock along the centerline, whereas the

minimum Mach number behind the regularly reflected shock is approxi-

mately : qual to 1.65.

A check was made on the solution to the highly overexpanded case

(P ./P., = 0.150) to determine if the numerical solution correctly

simulated the flow conditions across the strong normal shock in the

--- GNP-
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Figure 32. Computed Mach Number Contours in the Region
Near the Shock Reflection at the Centerline.
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region near the centerline. Since the v velocity components are

very small near the centerline, a one-dimensional analysis based

on the Rankine-Hugoniot relations across normal shocks can be applied.

As shown in Table 3, the computational solution was within 2% of

the exact one-dimensional analysis.

Table 3. Comparison Between a 1-D Analysis and the Computational
Solution Across the Mach Disc for P./P =0.150.

M M 2 P 2 P P2/P T 2/T.

Exact (1-D) 3.00 .475 10.33 3.857 2.679

Computational 3.00 .442 10.52 3.906 2.695

ZError ---- 1.1 1.8 1.3 0.6

Several other phenomena associated with afterbody flows are

evident in Figure 33, which displays computed velocity profiles

at given axial stations for the large Mach disc case. The separated

"deadwater zone" of recirculating flow is readily apparent in the

near wake region, as is the development of the near wake to a far

wake velocity profile. The existence of the strong Mach disc near

the centerline is very evident, and the flow in the subsonic core

region behind the shock accelerates in the correct manner to a slight-

ly supersonic condition at the outflow boundary.

A closer look at the near wake region is shown in Figure 34 for

two of the computational cases. This figure illustrates the change

in the shape of the "deadwater region" from a predominantly symmetric

nature at P i/P. = 1.03 to one with an asymmetric nature at P I/P_=

0.150. In this figure the dashed lines denote the dividing stream-

line and the streamlines through the stagnation point in the near

wake flow for each case. As shown in Figure 35, the dividing streamline
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Region of the Coflnwing Nozzle.
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moves toward the inner wall of the nozzle as the total pressure in

the jet is decreased. Although the stagnation point in the near wake

region moves radially as the jet stagnation pressure is changed, it

remains in a relatively constant position axially for the cases com-

puted.

Quantitative comparisons between the experimental data and the

computed solutions are based primarily on two parameters: the axial

distance along the centerline from the nozzle exit plane to the point

of reflection of the incident shock wave at the line of symmetry,

and the value of the nozzle base pressure coefficient. This reflec-

tion length, along with the type of shock reflection (either strong

or weak), is a good indication that the inviscid flow features in

the jet core caused by viscous-inviscid interaction are properly

simulated. These computed shock reflection lengths are obtained

by examining the axial variation in Mach number along the centerline

as shown in Figure 38 for a typical case. As shown in this figure,

the shock reflection is diffused over three cell lengths, with the

computational value of the reflection length taken as being at the

midpoint of these three cells. Comparisons between the experimental

and computational values of these reflection lengths are shown in

Figure 37 and Table 4. Excellent agreement was obtained, with the

computational results being within 2% of the experimental data.

An additional quantitative comparison was also made of the

computed and observed Mach disc radii for the two rases at which

the Mach disc was observed. This comparison is listed in Table 5.

The computed Mach radius was taken as the radial height of the
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Figure 37. Shock Reflection Lengths Along the Nozzle
Centerline vs Nozzle Pressure Ratio.
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4 sonic line immediately behind the strong shock wave. Very good

agreement was obtained for the highly overexpanded case (P./P.

0.150) in which a fairly large Mach disc occurs. Poorer agreement

was obtained for the case that was much nearer to transition to a

regular shock reflection, with a very small Mach disc radius (r m/r je

0.17). The first cell height adjacent to the centerline in the

computational solution possessed a value of r/r.jt 0.06, so that

numerical truncation error played a large part in the discrepancy

in Mach stem radius at this particular condition.

Table 4. Comparison of Shock Reflection Lengths

P.,P- Experimental Computational % Error
x r. (+0.05) x r. e (+0.04)

0.150 1.19 1.17 -0.3

0.251 1.88 1.91 +0.5

0.527 2.98 2.91 -1.2

1.030 4.37 4.26 -1.9

1.590 5.64 5.53 -2.0

Table 5. Comparison of Mach Disc Radii

P ./P. Experimental Computational %Error
r m/r jt(+0.05) r m/r.je (+0.04)

0.150 0.45 0.44 -2.2

0.251 0.17 0.06 -24.
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t Table 6. Comparison of Base Pressure Coefficients

Pj/P- Experimental* Computational % Error

B__ B(+0.003 ) V__b___0.002__

0.150 -0.240 -0.310 -25.0

0.251 -0.280 -0.299 - 6.8

0.527 -0.265 -0.276 - 3.9

1.030 -0.237 -0.245 - 2.9

1.590 -0.226 -0.219 + 2.5

*interpolated from existing values

Comparisons between the experimental and computational values

of nozzle base pressure coefficient are shown in Figure 6.14 and

Table 6. Since the experimental data points for the base pressure

coefficients were not obtained at the same pressure ratio values as

the schlieren data, experimental values for the base pressure coeffi-

cients in Table 6 were interpolated from the available data prints

at the five given nozzle pressure ratios. Values of the computed

nozzle base pressure were in good agreement with the experimental

data (3-77 error), with the exception of the highly overexpanded

case at which P,/P- = 0.150. Figure 38 shows that as the pressure

ratio of the nozzle is lowered, the decreasing trend in nozzle base

pressure reverses at a value of approximately P.i/P_ = 0.18 and sharply

increases as the pressure ratio is further reduced. This sudden reversal

in behavior is apparently due to flow separation in the divergent

portion of the nozzle which prevents the jet flow from expanding

fully to its assumed Mach 3.0 state. For pressure ratio values less

than P ./P., - 0.135, deterioration of the Mach disc formation to a

regular shock reflection occurs as shown in Figure 39. This may
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indicate that for values less than P.i/P_ =0.135, either the jet

Mach number is less than 1.48 and thus cannot support a Mach disc

structure (8), or the increase in nozzle static pressure due to the

reduced expansion cannot produce the deflection angle in the jet flow

needed for a Mach disc to occur. A non-separated condition was

assumed by the experimental investigators, since their value of P.

was determined using the jet total pressure and the final area ratio

of the nozzle. Likewise, the computational solutions assumed non-

separated Mach 3 flow just upstream of the nozzle exit plane. if some

separation did occur and the nozzle flow did not fully expand to a

Mach 3 condition, a substantial difference in base pressure could

result.

This hypothesis of separation in the nozzle was partially confirm-

ed by computationally solving a case where the jet total pressure

corresponded to the attached case (P ./P. = 0.150), but with jet

input profiles corresponding to an isentropic expansion cf the jet

flow to a Mach number of only 2.60 as detailed in Appendix E. A

correct strong shock structure was obtained computationally, and

the value of the base pressure coefficient increased to a value of

-0.265. This was in much better agreement with the experimental

data at this condition. A more accurate simulation of this pressure

ratio condition would require extending the computational mesh back

to the nozzle throat. Separation in the nozzle could then occur in

a direct manner in the numerical solution. Since this would require

extensive grid revisions as well as additional computer resources,

it was considered to be beyond the scope of this investigation.
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CHAPTER VII

CONCLUSIONS AND RECOILNIENDATIONS

A numerical method of obtaining solutions to the Navier-Stokes

equations for supersonic coflowing axisymmetric nozzles has been

developed from a selection of appropriate techniques. Based on the

numerical analysis and computational results obtained through this

study, the following conclusions are drawn:

1. The numerical solution of the Navier-Stokes equations applied to

supersonic coflowing nozzles successfully reproduced all of the

essential flow features including boundary layers, corner expan-

sions, recompression shocks, the recirculation region adjacent

to the nozzle base wall and the evolution of the near wake to a

flow with far wake behavior.

2. The numerical method achieved a correct transition from regularly

reflected shock waves at the line of symmetry in the jet core

flow to a strong Mach disc formation at the appropriate static

pressure ratio condition of the nozzle. The subsonic embedded

region immediately behind the Mach disc formation was simulated

in a correct manner.

3. The application of an adaptive grid scheme in the wake region

of the nozzle annulus successfully positioned the fine mesh

region of the computational grid in the wake region which nor-

mally contains severe flow gradients. This allowed the accurate

simulation of this high flow gradient region while conserving

numerical resources.
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*14. The nozzle base pressure was heavily dependent on the eddy

viscosity model applied in the region of the near wake. Once

the model was tuned for the neutrally expanded case (P.i/P M=

1.03), good agreement was obtained conputationally for all cases

where the flow obeyed the assumption of remaining attached in

the divergent portion of the nozzle.

5. Boundary conditions must be carefully formulated and applied

in order to prevent physically unrealistic results or numerical

divergence of the solution. Both the centerline and downstream

boundaries were sensitive where regions of subsonic flow occured

over a substantial portion of the boundary. Both the quadratic

extrapolation used in regions of supersonic flow and a second order,

zero gradient condition caused either divergence or unrealistic

conditions at the boundary when applied to regions of subsonic

flow. A first order zero gradient condition was used successfully

in these regions of subsonic flow and found to be superior.

Generalizations about the success of this first order boundary

condition cannot be made, since the degree of success achieved

is dependent on the specific numerical algorithm applied to the

problem.

6. The final steady state solutions were found to be insensitive to

the initial conditions applied over the computational domain.

However, the tine to converge to the final solution was highly

dependent on the application of specific initial conditions. In

particular, the region of subsonic recirculation in the near

wake was the last region In the solution domain to converge.

Solutions started using only the boundary layer profiles across
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the domain required three hours to converge on a Cyber 175 (45 x

45 point mesh), whereas cases started from a previous different

jet total pressure condition but with an established near wake

structure required only 1.7 hours to converge (45 x 45 mesh).

7. To the author's knowledge, this is the first full Navier-Stokes

solution that has accurately simulated the viscous-inviscid inter-

actions present in a supersonic coflowing nozzle at off-design

conditions where the strong Mach disc shock structure is present.

Mikhail (8) previously was unsuccessful in reproducing the Mach

disc reflection in a full Navier-Stokes solution due to the prob-

bable improper placement of the jet inflou boundary condition,

which did not allow the jet plume to expand to the degree necessary

to generate a Mach disc reflection.

Based on the numerical analysis and results obtained through

this study, the following recommendations are made:

1. The present scalar computer code developed during the course of

this investigation should be vectorized for use on the new genera-

tion of "supercomputers" such as the CRAY-I or the Cyber 203.

Although present solution times are on the order of two to four

hours when run on a Cyber 175 computer, a fully vectorized version

of the present computer code can be expected to converge within

five minutes on a CRAY-I computer (39). This will allow computa-

tion of more complex nozzle geometries and better resolution in

the boundary layers through the application of finer mesh, while

holding costs to a reasonable level.

2. The present numerical solver should be modified to include the
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effects of a calorically imperfect gas with variable specific heat

and thermal conductivity. This modification would allow accurate

simulation of the temperature dependent effects for hot exhaust

nozzles with gas temperatures less than 5000'R (19). Only minor

revisions to the existing computer code would be required in order

to include these temperature effects.

3. After the implementation of the two previous recommendations,

it would be desirable to incorporate the effects of species mixing

into the numerical solver. 'Many practical cases of interest involve

a jet exhaust gas with a different species than that of the external

stream. This modification would require a significant code revision,

since the addition of the equation of mass diffusion would be re-

quired, as would the correct modeling of appropriate mass diffusion

coefficients.
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t APPENDIX A

NOZZLE WALL TEMPERATURE CALCULATION

The nozzle wall boundary condition applied during the numerical

solution procedure assumes a constant nozzle wall temperature within

the computational domain. The relatively high thermal conductivity of

the stainless steel nozzle makes this assumption valid. This wall

temperature can be calculated by applying a heat flux balance across

the freestream boundary layer, the nozzle wall, and the jet boundary

layer as shown in Figure 40. Conduction of heat in the axial direction

is neglected due to the low temperature gradients in this direction.

Since both the freestream and the jet flow are of a high-velocity

nature, the unit heat flux for either stream can be written as (40):

4w hi (T - T ) (A-l)
1 1

where h. is the heat conductance of each flowstream. The adiabatic1

wall temperature, T aw, is defined by the expression:

T T. ( + n-r (y-1 ) M 2 (A-2)
aw. 1 ( 1

1

where n is 1/2 for laminar flow and 1/3 for turbulent flow. Equating

the heat flow out of the control volume for a steady state process gives:

Z 4i = 0 (A-3)
i

or

2TT ri ° 4 + 27 ° 4. = 0 (A-4)

where j. is either 0 or 1 for two-dimensional or axisymmetric flow,

respectively.
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Applying equation A-I to the values of the individual heat fluxes and

solving for the wall temperature gives:
T + (ro/rj)Jo(h /h.)T

aw . aw-
T -(A-5)

w (I + (ro/rj)J°(h /hj)]

For flows involving a constant boundary layer edge velocity and a

constant wall temperature, the conductances, hi, can be defined by tIhe

following analytic expressions:

-/2 p-2/3

h. = 0.332 C P u Re - 2Pr (A-6)
1 p 1 i xi

for laminar flow, and

'- 1/5 -2/5
h. = 0.0295 C uReI Pr (A-7)

Sp 1 xi

for turbulent flow (40). All of the quantities on the right-hand-side

of equation A-5 are then known, and a value for the wall temperature

can be calculated based on the states of the two flowfields adjacent

to the nozzle wall.
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* APPENDIX B

ADAPTIVE FINITE DIFFERENCE MESH

It is desirable that the fine mesh rugion of the computational

grid remain in the areas of relatively high velocity and temperature

gradients as the solution progresses towards convergence. Hirt (I)

has used a technique in the solution of free surface flows that allov'q

the grid to adapt as the solution progresses. The following kinematic

equation is applied in the region where the nozzle wake and shear layer

develop:

ar = AV_ rBI

at A( X

This equation ensures the condition that as the solution converges,

the physical slope of the constant n finite difference cell boundaries

is the same as that of the velocity vectors near each cell.

Equation (B-l) can be converted to the following finite difference

form for application to a computational mesh:

n n
r. .- r.n+l n n n 1,] i-l,j

r. .= r + C AL'. (B-2)Ci,j i,j A i,j i,j n
,j Xi-l,j

where

-n /(un nl n n

u' = 1/4 (uJ~ + u + u. _ + u ) (B-3)i,j i-l,j Ui+l,j +  i,j-l ui (B-

=14 nn n n
Vn = 1/4 (v n  + v + v + v ) (B-4)
ij i-1,j i+l,j ij-l ij+l

and where CA is a constant used to damp the grid motion with rvsprt

to time. Spatial averaging of the velocity components is applied in

order to reduce the effects of numerical velocity fluctuations at indi-
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vidual mesh points in the flow. The upwind difference form of the

cell aspect ratio term (Ar/Ax) is also utilized to achieve better

stability in the finite difference equation.

Equation (B-l) is applied in the wake region of the flowfield

for a line of constant n (j=constant), where the specific value of n

corresponds to the nozzle inner wall for overexpanded flowfields, and

to the nozzle outer wall for underexpanded flowfields. Once the posi-

tion of this grid reference line is established, the fine mesh region

corresponding to the wall thickness in computed. The exponential

stretching scheme discussed in Chapter III is then applied for each

value of in the regions above and below the fine mesh region as shown

in Figure 41. The first two grid points above the centerline were kept

fixed at constant heights for all values of x. This prevented large

numerical errors in axisymmetric cases involving the differencing of

terms containing (I/r), where r is a very small number.

The constant CA was specified in the range of 0.3 - 0.6 in

order to allow the grid to adapt smoothly as the solution converged.

Larger values of CA caused undesirable oscillatory motion of the grid

reference line with respect to time.

The adaptive grid scheme was applied once during every iteration

of the solution algorithm. The number of points allowed to "float" on

the grid reference line could be varied during the course of the solu-

tion. This capability was utilized primarily during the start-up

portion of the numerical solution, where only a limited number of points

close to the nozzle were allowed to "float" until the shear layer was

established. After the position of the shear layer across the complete
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computational domain was completely established, the adaptive grid

scheme could be turned off in order to save computer time during the

remainder of the solution.

I
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APPENDIX C

TWO-DIMENSIONAL FLAT PLATE FAR WAKE SOLUI1O;

In order to test the validity of the turbulence model in the

far wake region, a check case possessing known experimental data in

this region was computed. The exierimental data for this case is

that of Toyoda and Hiriyama (33), which involved a two-dimensional

thin flat plate at a Mach number of 1.60. T1,e flat plate possessed

a thickness of 1 mm and a trailii,, edge thickness of 0.1 mm.

The following flow quantities were given in the experimental

data:

M = 1.60

Po = 3.2 atm

Re = 5300

A value for free stream stagnation temperature was not 'iven experi-

mentally. A stagnation temperature of 518.7R was thurefor,

assumed. I'sing the previous quantities, the value for the boundary

laver momentum thickness at the trailing edge wa., computed ,:

TE = .0895 mmTE

The computational solution used the same nurnrikal slvtr

(ac(hormack's explicit method) as that of the cof lowi ,g n,,.' I u .

The eddy viscosity models utilized were identical withi tho,. ii--! ir

the boundary layer and far wake regions of the cof 1wr1r,:. 1'

boundary conditions utilized also closeliv resr'cr.l e tlhio o! t ,t 1,,u :,

nozzle. The inflow conditions wert. set by the expt ri-iT' il atI dt
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remained fixed for the duration of the solution. The upstream u

component of velocity near the trailing edge of the plate was matched

to that of the experimental data as shown in Figure 42. Input con-

ditions at the upstream boundary were then set as:

u(xi, Y, t) = 0.6295 u (y/ CTE/5 (C-1)

v(x Y, t)= 0.0 (C-2)1

(y - 1),,,2, .,)2
,(xi y , t) = . /{1 + ( ,. [1 (u(xi I , t)/u , ]. (C-3)

P(x i, v, t) = P (C-4)

Butl; the upper and lower freestream boundaries utilize the charact-

t.ritic condition applied at the upper boundary of the coflowing

nozzle solutions. The outflow and wall boundaries used conditions

identical to those utilized for the coflowing nozzle. The computational

tion was initially started by applying the upstream profile across

t , ): - i'ut.at ionaI domain:

(v .. , i = 'xl 1  Y, o) (C-5)

i t,. lat ion it ilized a 30x34 computational mesh, with ex-

,.-1.t l ., r t h! ing emiploved in both the x and y directions

in r irt -* 3. .iniman grid spacings in the x and y direc-

ti n- wurt I'.1 2-r,:- and O.lO(Jam, respectively. The physical dimensions

,, the wruta ional flowfield n the x and v directions were 38mm

and 2 lmr., respectivelv. The rat( of data processing on a CDC Cvber

175 co::. t t r 1*.(,()14 sec per grid p,,int for each iterative time

step. The s,-,' in was c,-mptuted for a duration of four characteristic

times ('12W) it-rations), at wl ,ich time no significant ch.nge was

detected in the depeVTder t vari-ibl 1es. The result was then taken to
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be the asymptotic solution.

The computational solution demonstrated that the eddy viscosity

model gives good results in the far wake region. The maximum velocity

defect generated computationally is in good agreement with the ex-

perimental data as shown in Figure 21. Figure 43 shows that the

velocity fi(Id generated computationally evolves from the boundary

layers on the plate to a classic wake solution very rapidly due to

the turbulent nature of the flow.
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APPENDIX D

TWO-DIMENSIONAL WEDGE-FLAT PLATE NEAR WAKE SOLUTION

In order to test the validity of the turbulence model utilized

in the near wake region of the coflowing nozzle solutions, a check

case exhibiting similar physical characteristics and possessing

known experimental data in this region was solved numerically. The

experimental case selected for this validation study is one obtained

by Rom, Seginer and Kronzon (35) for a two-dimensional wedge-flat

plate in a turbulent supersonic flowfield. The model used for this

study consisted of a sharp 150 half angle wedge-flat plate with a

base height of ±0 mm and a chord of 44 mm. The following flow con-

ditions were given in the experimental data:

M= 2.25

Re = 1.5 x 106
c

P = 40 psig

T =492' R
0-

A computed adiabatic wall temperature of 466.60 R based on the flow

condition at the flat plate portion of the model was used in the

computational solution.

The numerical solution used the same computational solver and

turbulence model as that of the coflowing nozzle solutions. The

boundary and initial conditions were also identical to those used

in the coflowing nozzle with the exception of the jet centerline

condition. As shown in Figure 45, this condition was replaced with

a lower freestream boundary which utilized a characteristic scheme

similar to that of the upper freestream boundary. Since a value for
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the boundary layer thickness near the trailing edge was given experi-

mentally (W/h = 0.15), a two-dimensional boundary layer code was

used to generate the velocity and temperature profiles on the up-

stream boundary. The boundary layer starting length was adjusted to

give the correct boundary layer thickness. One additional condition

was imposed on the line of symmetry for the wedge (j = 23). At this

line of symmetry, a zero v velocity component was enforced to help

stabilize the wake during the startup of the numerical solution and

help accelerate convergence by damping any numerical shear layer

oscillations in the wake.

The solution was calculated using a 45 x 45 point computational

mesh with exponential stretching employed in both the x and y

directions as shown in Figure 46. The physical dimensions of the

computational flowfield in the x and y directions were 10cm and 7cm,

respectively. Minimum grid spacing in the x and y directions was

set at 0.5 mm. This gave a value of u/u = 0.83 for the first pointe

in the boundary layer above the nozzle wall, which corresponds to an

identical value in the jet boundary layer of the coflowing nozzle

solutions. Thus, truncation error should be similar in this region

for both the wedge-flat plate and the coflowing nozzle. The rate

of data processing on a CDC Cyber 175 computer was 0.0014 sec per

grid point for each iterative time step. The solution was allowed

to progress for approximately four characteristic timesteps at which

time the change in the dependent variables was less than 0.5. per

characteristic time period. This condition was then considered to

be the converged asymptotic solution.
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Specific features o' the experimental flowfield in the near

wake were reproduced in the computational solution and can be dis--

tinguished in the plots of Mach number contours and velocity profiles

shown in Figures 47 and 48. Several flow features which were numeri-

cally observed include the existence of the boundary layers along

tl,- horizontal walls of the body, the turning of the flow through the

corner ex,)ansion fans, the existence of the subsonic recirculating

"dead water" region adjacent to the base of the body, flow recom-

pression through the trailing shocks, and the evolution of the wake

to a classic far wake flow. The weak lip shock evident in the

experimental data was not readily evident in the numerical solution.

This may be attriLlted to the fact that the numerical method tends

to smear shocks, and thus has difficulty locating shocks which are

very weak.

Quantitative accuracy of the numerical solution is identified

through the use of the given experimental static pressure and pitot

pressure data. A comparison of the axial static pressure distribu-

tion along the line of symmetry is shown in Figure 49. The computed

static pressure distribution is within 5 of the measured val.'es

except in the region of recirculating flow (x - 1.Ocm), where there

is up to a 7% discrepancy between the experimental and computed values.

However, static pressure probes like the one used to obtain the data

are very sensitive to flow angularity, and thus less ieliable in areas

of recirculating flow. A more reliable comparison is that of the

piot-pressure surveys shown in Figtire 0. These measurements are

less susceptible to errors resulting from flow angularity. This
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Figure 50. Pitot Pressure Profiles in the Near Wake of
the Two-Dimensional Wedge-Flat Plate (Symbols

- Experimental Data(34), solid Lines - Compu-
tational solution).
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figure shows excellent agreement in the "deadwater" region of

recirculating flow. The numerical solution smears the weak be-

ginninc of the recompression trailing shocks at 0.5cm, but correctly

simulates them at the correct values further downstream (x > 1.0).

This figure particularly demonstrates that the phenomena present in

the near wake are accurately simulated by the present computational

method and turbulence modeling.

1
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APPENDI: E

SI SYM' ETFRIC COFLOUINt; NOZZLE SOIUTION

SIMV'tLATING INTERNAL SEPARATION OF THE NOZZLE

The peculiar reversal in the nozzle base pressure coefficient

as the pressure ratio was lowered below Pj/P = 0.18 was bklieved to

be caused by separation in the nozzle (Fig. 38). This was further sub-

stantiated through an examination of the schlieren photographs (16)

which show a definite change in flow character near this value (Fig. 39).

To test this hypothesis a numerical solution was computed for a case

where the jet total pressure corresponded to that of the attached strong

shock solution (P.I/P_ = 0.15), but where the jet Mach number equals

2.60 based upon an isentropic expansion in the nozzle. For this jet

Mach number a reduction in nozzle area ratio was assumed from A/A* = 4.2

at Mach 3 to A/A* = 2.9 at Mach 2.60. This reduced expansion rate

was intended to roughly simulate the effects of boundary layer separa-

tion in the nozzle, while retaining grid geometry and fineness identical

to the previously calculated attached jet flow case.

The following jet flow parameters were used in this solution:

M. - 2.60
2

T = 580.5°R
oJ

P -- 1636 psf

These jet conditions produce an actual nozzle pressure ratio of

Pj/P = 0.276 versus the calculated value of P./P- = 0.150 which was

assumed in Reference 16.

This solution was initialized using the solution for the attached

strong shock case with a calculated nozzle pressure ratio equal to
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.r thc, u,.t rea:. j, et b oundarr, hoiundrv cond it ions

'., i iurat ion ident ical to those of the attached case were

i:ut- , tht, upstream jet boundary the following: velocity pro-

1 I i X 'd

u = 2002 ft/sec 0 r/r. 0.835
jet -

u = 0 0.831 , r/r. 1
jet

v = 0 0 - r/r. ' 1- jet -

As shown in Figure 51, this velocity input profile increased

the displacement thickness of the jet boundary layer in rough approxi-

mation to that caused by separation in the nozzle. In this case the

jet flow is assumed to be turbulent in nature.

As shown in Figure 52, a strong shock solution was obtained, with

a reflection length of x /rjet 1.29, about 2% greater than the ex-

perimental value at this jet total pressure case. The base pressure

coefficient obtained was equal to -0.264, about 8% less than the

experimental value and in much better agreement than that of the

attached jet boundary layer case.

Although discrepancies in this solution such as the smaller

diameter of the computational YIach disc and the appearance of a

physically nonexistant secondary Mach disc further donwstream are

apparent, this case does demonstrate that separation and its effect

on the flow expansion in the nozzle can significantly impact the

resultant base pressure coefficient of the nozzle. Therefore,

future computations for low pressure ratios should commence at the

throat section to insure that nozzle separation is properly considered.
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APPENDIX F

INVESTIGATION OF NLAERICAL ERROR

Two error analyses were performed on the numerical technique

used to obtain solutions for the coflowing nozzle. The first con-

sisted of examining the error generated by the numerical algorithm

used to solve the Navier-Stokes equations. The second was a study

of the effcct of repositioning first the downstream boundary, and

subsequently the upper boundary to regions containing only minor flow

gradients normal to each boundary. These analyses are discussed in

detail in the following sections.

Truncation Error Analysis

acCormack's explicit finite difference algorithm is an equiva-

lent second order accurate numerical solver. The final converged

solution for any case computed by this algorithm should then satisfy

the Navier-Stokes equations at all interior node points with second

order accuracy. A numerical check on this accuracy was conducted

using a typical converged solution and the following procedure.

As shown in Chapter 2, the axisymmetric Navier-Stokes equations

can be written as:

, F ' , (r(,) H
+ I' + I (r) - 0 (F-l)

:)t 'x r jr r

A nondimensionalized finite difference formulation of these equations

can then be written as:

Ct
tc wJ c 'F I A~ -rC 1

+ t - + 1 - - I = F = Error (F-2)
Ii -  t +  !.x r Ar r
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where t" is defined as:

= u (F-3)

and t = 5 x 10- 6 sec is set to insure that the lead terms on the
C

left hand side of equation (F-2) are of order one.

The particular check case selected was that containing the

strong Mach disc shock structure (P./P = 0.150), since this

case contains both substantial regions of subsonic and supersonic

flow, and oblique as wl as normal shock waves. The MacCormack

solution for this case was used as input for equation (F-3), where

the left hand side of the equation was computed at all interior

grid points using a standard two-dimensional second order central

differencing scheme applied on the transformed computational plane.

The magnitude of the Error vector (E) is then an indication of how

close !Macrormack's method is to an alternate second order accurate

solver. The following root mean square (RIS) values of E were

obtained over the interior of the computational domain:

E 0.026

E E = 0.020
rms '

E 0.01.1

E 0.026

This result indicates that over the domain, MacCormack's algorithm

and the two-dimension; .di difference scheme are equivalent to

within three percent.
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Finally, the Error vector E was examined over the computational

domain to determine which regions generated the highest magnitude of

error. Since the RMS error value of the continuity equation was one

of the largest, and the error distribution was representative of that

in the other equations, it is shown in Figure 53. In this figure,

only error values greater than the RMS value are shown as contours.

Regions containing the largest error consist of those containing shock

waves and that containing the expansion fan near the sharp corner

of the nozzle. Ini these shock regions, strong flow gradients exist

over areas with fairly coarse finite difference mesh spacing. Although

the wake region also contains strong gradients within the mixing layer,

it lies within a fine mesh region of the grid that produces much less

numerical error.

This analysis further demonstrates the desirability of utilizing

adaptive mesh schemes that can align the grid with flow gradients

as the solution progresses to convergence.

Boundary Position Analysis

Although the upstream boundary, the centerline boundary, and

the position of the nozzle walls were fixed by the definition of the

problem to be solved, the placement of both the downstream boundary

and the upper boundary was left to the discretion of the computational

investigator. It was desirable to place these boundaries as close to

the nozzle as possible in order to achieve computational efficiency

in a compact domain. In the cof lowing nozzle solutions, both of these

boundaries were located in regions in which flow gradients existed due

to the presence of shock and expansion waves and viscous phenomena such

as shear layers and wakes in the flowfield. The assumption is made that
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positioning these two boundaries in flow gradient regions does not

affect the computational solutions obtained. To validate this

assumption, each of these boundaries was repositioned a greater dis-

tance from the nozzle to regions containing only minor flow gradients

normal to each boundary. The resulting effect on the shock wave

structure as well as on the nozzle base pressure coefficient in the

numerical solution was then observed.

The coflowing nozzle case for which P.!?- = 0.251 was exaivined for

this particular study. The downstream boundary contains primarily super-

sonic outflow with an embedded wake region of subsonic outflow. The

downstream boundary was extended from its original position at x/r. je 3.0

to a new value of x/r. je= 6.0. This stretching was achieved by the

addition of twelve grid points axially to the original mesh. The out-

flow at this new position was totally supersonic in nature with only

minor gradients in existence normal to the boundary. As shown in

Figure 54, no changes were evident in the shock structure contained in

the original domain. The computational base pressure coefficient

remained unchanged at a value of PB= -0.299.

The effect of repositioning the upper boundary to a radial distance

at which flow gradients are not present was then examined. The upper

boundary of the axially stretched case was extended from its original

value of r/r. je= 3.0 to a new value of r/r. je= 6.0 as shown in Figure

55. In this case eight grid points were added radially to the axially

stretched mesh. Again, no changes were evident in the numerical shock

structure, and the computational value of the nozzle base pressure co-

efficient remained at p -0.299.
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Since repositioning these boundaries had essentially no

effect on the computational solution that was examined, the applica-

tion of these boundary conditions in the original regions containing

mixed supersonic-subsonic flow on the outflow boundary and substantial

flow gradients on both boundaries was valid.
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